

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Homological algebra

A remark on a theorem by Claire Amiot

Une remarque sur un théorème de Claire Amiot

Bernhard Keller

Université Paris-Diderot – Paris 7, UFR de Mathématiques, Institut de mathématiques de Jussieu–PRG, UMR 7586 du CNRS, Case 7012, bâtiment Chevaleret. 75205 Paris cedex 13. France

ARTICLE INFO

Article history: Received 1 August 2018 Accepted 12 September 2018 Available online 22 September 2018

Presented by Michèle Vergne

ABSTRACT

Claire Amiot has classified the connected triangulated *k*-categories with finitely many isoclasses of indecomposables satisfying suitable hypotheses. We remark that her proof shows that these triangulated categories are determined by their underlying *k*-linear categories. We observe that, if the connectedness assumption is dropped, the triangulated categories are still determined by their underlying *k*-categories together with the action of the suspension functor on the set of isoclasses of indecomposables.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

Claire Amiot a classifié les *k*-catégories triangulées connexes avec un nombre fini d'objets indécomposables vérifiant des hypothèses techniques convenables. Nous remarquons que sa démontration montre, en fait, que ces catégories sont déterminées par leurs *k*-catégories sous-jacentes. Nous notons que, si l'hypothèse de connexité est omise, elles sont toujours déterminées par leurs *k*-catégories sous-jacentes et l'action de la suspension sur l'ensemble des classes d'isomorphie des objets indécomposables.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. The connected case

We refer to [1] for unexplained notation and terminology. Let k be an algebraically closed field and \mathcal{T} a k-linear Hom-finite triangulated category with split idempotents. Recall Theorem 7.2 of [1]:

Theorem 1 (Amiot). Suppose \mathcal{T} is connected, algebraic, standard, and has only finitely many isoclasses of indecomposables. Then there exists a Dynkin quiver Q and a triangle autoequivalence Φ of $\mathcal{D}^b(\mathsf{mod}\,kQ)$ such that \mathcal{T} is triangle equivalent to the triangulated [6] orbit category $\mathcal{D}^b(\mathsf{mod}\,kQ)/\Phi$.

E-mail address: bernhard.keller@imj-prg.fr.

Our aim is to show that the proof of this theorem in [1] actually shows that a given k-linear equivalence $\mathcal{D}^b(\mathsf{mod}\,kQ)/F \xrightarrow{\sim} \mathcal{T}$, where F is a k-linear autoequivalence, lifts to a triangle equivalence $\mathcal{D}^b(\mathsf{mod}\,kQ)/\Phi \xrightarrow{\sim} \mathcal{T}$, where Φ is a triangle autoequivalence lifting F. Thus, we obtain Corollary 2.

Corollary 2. Under the hypotheses of the theorem, the k-linear structure of \mathcal{T} determines its triangulated structure up to triangle equivalence.

Proof. The facts that \mathcal{T} is connected, standard and has only finitely many isoclasses of indecomposables imply that there is a Dynkin quiver Q, a k-linear autoequivalence F of $\mathcal{D}^b(\text{mod }kQ)$ and a k-linear equivalence

$$G: \mathcal{D}^b(\mathsf{mod}\, kQ)/F \xrightarrow{\sim} \mathcal{T}.$$

This follows from the work of Riedtmann [7], cf. section 6.1 of [1]. We will show that F lifts to an (algebraic) triangle autoequivalence of $\mathcal{D}^b(\mathsf{mod}\,kQ)$ and G to an (algebraic) triangle equivalence Γ . We give the details in the case of F, which were omitted in [1]. Put $\mathcal{D} = \mathcal{D}^b(\mathsf{mod}\,kQ)$. Since \mathcal{D} is triangulated, the category $\mathsf{mod}\,\mathcal{D}$ of finitely presented functors $\mathcal{D}^{op} \to \mathsf{Mod}\,k$ is an exact Frobenius category and we have a canonical isomorphism of functors $\mathsf{mod}\,\mathcal{D} \to \mathsf{mod}\,\mathcal{D}$

$$\Sigma_m^3 \xrightarrow{\sim} \Sigma_{\mathcal{D}}$$
,

where $\Sigma_{\mathcal{D}} : \operatorname{mod} \mathcal{D} \to \operatorname{mod} \mathcal{D}$ denotes the functor $\operatorname{mod} \mathcal{D} \to \operatorname{mod} \mathcal{D}$ induced by Σ and Σ_m is the suspension functor of the stable category $\operatorname{mod} \mathcal{D}$, cf. [4, 16.4]. Notice that Σ_m only depends on the underlying k-category of \mathcal{D} . Now if S_U denotes the simple \mathcal{D} -module associated with an indecomposable object U of \mathcal{D} , we have

$$S_{\Sigma U} = \Sigma_{\mathcal{D}} S_U \xrightarrow{\sim} \Sigma_m^3 S_U$$

in the stable category $\underline{\operatorname{mod}}\mathcal{D}$. Since F is a k-linear autoequivalence, the functor it induces in $\underline{\operatorname{mod}}\mathcal{D}$ commutes with Σ_m and we have $S_{F\Sigma U}\cong S_{\Sigma FU}$ in $\underline{\operatorname{mod}}\mathcal{D}$ for each indecomposable U of \mathcal{D} . It follows that if S_U is not zero in $\underline{\operatorname{mod}}\mathcal{D}$, then we have an isomorphism $F\Sigma U\cong \Sigma FU$ in \mathcal{D} . Now S_U is zero in $\underline{\operatorname{mod}}\mathcal{D}$ only if S_U is projective, which happens if and only if the canonical map $P_U\to S_U$ is an isomorphism, where $P_U=\mathcal{D}(?,U)$ is the projective module associated with U. This is the case only if no arrows arrive at U in the Auslander-Reiten quiver of \mathcal{D} and this happens if and only if no arrows start or arrive at U. The same then holds for the suspensions $\Sigma^n U$, $n\in\mathbb{Z}$. Since we have assumed that \mathcal{T} and hence \mathcal{D} is connected, this case is impossible. Therefore, we have an isomorphism $\Sigma FU\cong F\Sigma U$ for each indecomposable U of \mathcal{D} . It follows that T=F(kQ) is a tilting object of \mathcal{D} . By [5], we can lift T to a kQ-bimodule complex Y, which is even unique in the derived category of bimodules if we take the isomorphism $kQ\overset{\sim}{\to} \operatorname{End}_{\mathcal{D}}(F(kQ))$ into account. Since the k-linear functors F and $\Phi=?\otimes_{kQ}Y$ are isomorphic when restricted to $\operatorname{add}(kQ)$, they are isomorphic as k-linear functors by Riedtmann's knitting argument [7]. Since the triangulated category \mathcal{T} is algebraic, we may assume that it equals the perfect derived category per \mathcal{A} of a small dg k-category \mathcal{A} . Using Riedtmann's knitting argument again, it follows from the proof of Theorem 7.2 in [1] that the composition

$$\mathcal{D} \xrightarrow{\pi} \mathcal{D}/\Phi \xrightarrow{G} \mathcal{T} = \operatorname{per} \mathcal{A}$$

lifts to a triangle functor $? \overset{L}{\otimes_{kQ}} X$ for a kQ- \mathcal{A} -bimodule X. Moreover, it is shown there that this composition factors through an algebraic triangle equivalence

$$\Gamma: \mathcal{D}/\Phi \xrightarrow{\sim} \mathcal{T} = \operatorname{per} \mathcal{A}.$$

Since the compositions $\Gamma \circ \pi$ and $G \circ \pi$ are isomorphic as k-linear functors, the functors Γ and G are isomorphic as k-linear functors. \Box

2. The non-connected case

Let k be an algebraically closed field and \mathcal{T} a k-linear Hom-finite triangulated category with split idempotents and finitely many isomorphism classes of indecomposables. We assume that \mathcal{T} is algebraic and standard, but possibly non-connected.

Assume first that \mathcal{T} is Σ -connected, i.e. that the k-linear orbit category \mathcal{T}/Σ is connected. Then the argument at the beginning of the above proof shows that either \mathcal{T} is connected or \mathcal{T} is k-linearly equivalent to $\mathcal{D}^b(\mathsf{mod}\,kA_1)/F$ for a k-linear equivalence F of $\mathcal{D}^b(\mathsf{mod}\,kA_1)$. Clearly F lifts to a triangle autoequivalence, namely a power Σ^N , of the suspension functor of $\mathcal{D}^b(\mathsf{mod}\,kA_1)$. We may assume that N>0 equals the number of isoclasses of indecomposables of \mathcal{T} . Since the underlying k-category of \mathcal{T} is abelian and semi-simple, all triangles of \mathcal{T} split and \mathcal{T} is triangle equivalent to $\mathcal{D}^b(\mathsf{mod}\,kA_1)/\Sigma^N$. Let us now drop the Σ -connectedness assumption on \mathcal{T} . Then clearly \mathcal{T} decomposes, as a triangulated category, into

Let us now drop the Σ -connectedness assumption on \mathcal{T} . Then clearly \mathcal{T} decomposes, as a triangulated category, into finitely many Σ -connected components (the pre-images of the connected components of \mathcal{T}/Σ). Each of these is either connected or triangle equivalent to $\mathcal{D}^b (\text{mod } kA_1)/\Sigma^N$ for some N > 0. Thus, the indecomposables of \mathcal{T} either lie in connected

components or in Σ -connected non-connected components and the triangle equivalence class of the latter is determined by the action of Σ on the isomorphism classes of indecomposables. We obtain Corollary 3.

Corollary 3. \mathcal{T} is determined up to triangle equivalence by its underlying k-category and the action of Σ on the set of isomorphism classes of indecomposables.

We refer to Theorem 6.5 of [3] for an analogous result concerning the Σ -finite triangulated categories \mathcal{T} and to [2] for an application.

I am grateful to Susan Sierra for bringing the question to my attention.

References

- [1] C. Amiot, On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. Fr. 135 (3) (2007) 435-474.
- [2] S. Crawford, Singularity categories of deformations of Kleinian singularities, arXiv:1610.08430 [math.RA].
- [3] N. Hanihara, Auslander correspondence for triangulated categories, arXiv:1805.07585 [math.RT].
- [4] A. Heller, Stable homotopy categories, Bull. Amer. Math. Soc. 74 (1968) 28-63.
- [5] B. Keller, Bimodule complexes via strong homotopy actions, in: Special Issue Dedicated to Klaus Roggenkamp on the Occasion of His 60th Birthday, Algebr. Represent. Theory 3 (4) (2000) 357–376.
- [6] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005) 551–581.
- [7] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (2) (1980) 199-224.