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Let (Xi, Yi)i=1,...,n be a sequence of strongly mixing random vectors valued in F×R, where 
F is a Hilbert space. This note deals with the problem of the local linear estimation of the 
conditional cumulative distribution function of Yi given Xi . Then, the main goals of this 
note are (i) to construct a fast kNN local linear estimate of the conditional distribution 
function, and (ii) to prove its strong consistency in the functional time series analysis 
situation.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit (Xi, Yi)i=1,...,n une suite de vecteurs aléatoires, fortement mélangeants, à valeurs dans 
F ×R, où F est un espace de Hilbert. Dans cette note, nous nous intéressons au problème 
d’estimation locale linéaire de la distribution conditionnelle de Yi sachant Xi . Les objectifs 
principaux de cette note sont donc (i) de construire un estimateur local linéaire rapide, en 
introduisant la technique des k plus proches voisins, de la distribution conditionnelle et (ii) 
de prouver sa consistance forte dans le cadre des séries temporelles conditionnelles.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last decades, Functional Data Analysis (FDA) has known continuous developments. It is among the most active 
fields of research in statistic (see for instance [1], [7] and [12] for some recent and general studies). The nonparametric 
functional data analysis was started in the beginning of this century. It was popularized by the monograph [10]. Since the 
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publication of this monograph, various nonparametric models have been developed in FDA (see, for instance, [11] and [18]
for a state of the art and a deeper discussion on this topic). Notice that among the widely developed approaches, in the 
last few years, we find the functional local linear method (LLM). The principal motivation of this subject is the superiority 
of this approach over the classical kernel method (CKM). In particular, the LLM has a small bias compared to the kernel 
method (see [9], for the finite dimension framework, and [2], for the FDA setup). In fact, Ba‘ıllo and Grané [2] constructed 
a local linear estimate (LLE) of the regression operator when the explanatory variable belongs to an Hilbert space, whereas 
Barrientos-Marin, Ferraty, and Vieu’s LLE [3] is defined on a Banach space. On the other hand, Berlinet, Elamine, and Mas’s 
version [4] is based on the use of the inverse of the local covariance operator of the functional regressor, whereas Zhou and 
Lin [20] studied the asymptotic normality of the LLE of the regression operator.

Furthermore, the conditional distribution function (CDF) was studied in [15], which established the almost complete 
(a.co.) consistency of a LLE of this CDF, and in which the asymptotic result is obtained under a spatial dependency condition. 
We return to [8] for the mean quadratic consistency of the LLE of the CDF in FDA. All these cited works used the so-called 
kernel local linear method; however, in this note, we use a new approach that is based on a mixing of the kNN method and 
LLM ideas to estimate the CDF.

Recall that the kNN method has more practical advantages than the CKM. In particular, it allows us to construct an 
attractive estimate that is adapted to the local structure of the data (see [6] for more motivations on this topic). The kNN 
method has been studied in the nonparametric FDA setting by many authors (see, for instance, [5], [16] and [17] for previous 
works on the functional kNN method and [13] and [14] for recent advances and references on FDA).

Whilst the most studies on the functional kNN method are oriented toward the regression estimation by a local constant 
method, we consider, here, a more efficient estimate of the CDF by the LLM. Precisely, in order to benefit from the nice 
features of both the LLM and the kNN procedures, we combine the two approaches. In other words, we construct a new 
estimate of the CDF and we study its asymptotic properties. Hence, our main asymptotic result is the establishment of the 
a.co. consistency (with rate) of the constructed estimate. This asymptotic result is obtained under an α-mixing condition.

It must be noticed that the smoothing parameter, in the kNN method, is a random variable that makes the asymptotic 
study of this method more difficult than the local constant method, where the smoothing parameter is a scalar. This diffi-
culty becomes more complicated in the functional time series setting. Nevertheless, the functional time series case is a more 
realistic situation than the independent one. Typically, the functional time series data can be constructed from a continuous-
time stochastic process. For instance, our approach can be applied to predict future values of some continuous-time process 
by cutting the whole past of this process into continuous paths.

This paper is organized as follows. Section 2 is devoted to the presentation of the LLE estimate of the CDF. Then, the 
main result is given in Section 3.

2. The model and its estimation

Let (Xi, Yi)i=1,...,n be a sequence of strongly α-mixing and identically distributed random vectors that are valued in 
F ×R, where F is a Hilbert space.

In what follows, we fix a curve x ∈F and we consider a given neighborhood Nx of x. We assume that the regular version 
of the CDF F (·, x) of Y given X = x exists. Moreover, we assume that F (·, x) has a continuous density f (·, x) with respect to 
Lebesgue’s measure over R.

In FDA, there are several ways for extending the LLM ideas (see, for instance, [2], [3] and [8] and references therein). 
But, all local linear fitting requires a smoothing condition that allows us to approximate locally the nonparametric model by 
a linear function. Then, we estimate the function F (·, x) as follows. We assume that, for a fixed (y, x) ∈ R ×F , the function 
F (y, x) is smoothed enough to be locally approximated by a linear function. That is, for all x0 ∈Nx:

F (y, x0) = ayx + byx(x0 − x) + ρyx(x0 − x, x0 − x) + o(‖x0 − x‖2), (1)

where byx (respectively, ρyx) is a linear (respectively, a bilinear continuous) operator from F into R (respectively, F × F
into R).

In order to construct the LLE of the CDF F (y, x), we use the fact that:

P
(
Y ≤ y

∣∣X = x
) = E

[
1{Y ≤y}

∣∣X = x
]
,

where 1A denotes the indicator function on the set A. So, the kNN estimates of the operators ayx and byx , in the formula (1), 
are the minimizers of the following rule:

min
a,b

n∑
i=1

(
1{Yi≤y} − a − b(Xi − x)

)2
K

(‖x − Xi‖
hk

)
,

where K is a kernel function and hk = min{h ∈R
+ such that

∑n
i=1 1B(x,h)(Xi) = k}.
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Then, by using the same ideas as in [2], we built an estimate of the CDF F (y, x) as follows. Let

Q B =
⎛⎜⎝ 1 c11 . . . c1 J

...
...

...
...

1 cn1 . . . cn J

⎞⎟⎠ ,

where ci j are the coefficients of (Xi − x) in a truncated version of the basis (v j)1≤ j≤ J of F and put

K = diag(K (h−1
k ‖x − X1‖), . . . , K (h−1

k ‖x − Xn‖)) and Y ′ = (
1{Y1≤y}, . . . ,1{Yn≤y}

)
.

Then, we assume that (Q ′
B K Q B) is a nonsingular matrix to express the LLE of the CDF F (y, x) by:

F̂ (y, x) = âyx = e′
1(Q ′

B K Q B)−1(Q ′
B K Y ),

where e′
1 denotes the transpose of the first vector of the canonical basis of R J .

3. Asymptotic properties of the estimate ̂F (y, x)

In what follows, we denote by (y, x) a fixed point in R ×F and Ny a fixed neighborhood of y. Furthermore, we assume 
that our nonparametric model satisfies the following conditions:

There exists a > 2, such that
∑

naα(n) < ∞. (2)

For any r > 0, φx(r) := P(X ∈ B(x, r)) > 0 is an invertible function, (3)

and, for all i �= j:

0 < sup
i �= j

P
[
(Xi, X j) ∈ B(x,h) × B(x,h)

] ≤ C(φx(h))a/(a−1), (4)

where B(x, r) := {z ∈F such that d(z, x) < r} denotes the ball centered at x and of radius r.

There exists 0 < c < 1 < c′ < ∞ such that lim
r→0

φx(rc)

φx(r)
< 1 < lim

r→0

φx(rc′)
φx(r)

. (5)

The kernel K is a differentiable function supported within [0, 1] for which its first derivative K ′ exists and such that there 
exist two constants C and C ′ such that:

−∞ < C ′ < K ′(t) < C < 0 for 0 ≤ t ≤ 1. (6)

The number k of neighbors is such that:

k ≥ Cn
4

a+1 +η with η > 0 for a > 4. (7)

Remark 3.1. It is clear that all these conditions are common in the FDA context. In particular, the dependency setting is 
explored through assumption (2), for the global dependency, and assumption (4), for the local dependency. Such condi-
tions combined with assumption (7) allow us to establish the same convergence rate as in the independent and identically 
distributed (i.i.d.) case. Notice also that we can obtain convergence results without these assumptions; however, the conver-
gence rate expression will depend on the covariance between the observations.

Theorem 1. Under assumptions (2)–(7), we have:

|̂F (y, x) − F (y, x)| = O ( J−1) + O

(
φ−1

x

(
k

n

)2
)

+ O a.co.

(√
ln n

k

)
, as min(n, J ) → ∞.

Remark 3.2. It appears clear that this approach improves the bias term of the local constant method. Indeed, the bias term, 
here, is of order O  

(
φ−1

x (k/n)2
)

. But, under the same regularity condition the kernel method gives a bias term of order 

O  
(
φ−1

x (k/n)
)
. Thus, we deduce that the functional local linear approach keeps its advantages as in the multivariate case 

that is the reduction of the bias term.

Sketch of Theorem 1’s proof. The basic ideas of this proof are: (i) we use the matrix formula of F̂ (y, x) to explicit the error 
F̂ (y, x) − F (y, x), and (ii) we combine ideas used in [2] with those used in [6] to evaluate the obtained error. Furthermore, 
the dependency structure is managed by the Fuk–Nagaev inequality and the covariance term is determinated by the usual 
techniques in [19]. In order to save space, the proof is omitted here, but it may be obtained on a simple request to one of 
the authors. �
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