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A simple way to sample a uniform triangulation of the sphere with a fixed number n
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time of this Markov chain.
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r é s u m é

Un moyen simple de simuler une triangulation uniforme de la sphère avec un nombre 
fixé n de sommets est d’utiliser une méthode de Monte-Carlo : on démarre avec une 
triangulation quelconque, puis, de manière répétée, on choisit une arête uniformément et 
on la « flippe », i.e. on l’efface et on la remplace par l’autre diagonale du quadrilatère qui 
se forme. Nous montrons que le temps de mélange de la chaîne de Markov obtenue est au 
moins d’ordre n5/4.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Much attention has been given recently to the study of large uniform triangulations of the sphere. Historically, these 
triangulations have been first considered by physicists as a discrete model for quantum gravity. Before the introduction 
of more direct tools (bijection with trees or peeling process), the first simulations [6,7] were made using a Monte-Carlo 
method based on flips of triangulations.

More precisely, for all n ≥ 3, let Tn be the set of rooted type-I triangulations of the sphere with n vertices (that is, trian-
gulations that may contain loops and multiple edges, equipped with a distinguished oriented edge). If t is a triangulation, 
we write V (t) for the set of its vertices and E(t) for the set of its edges. If t ∈ Tn and e ∈ E(t), we write flip(t, e) for the 
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Fig. 1. An example of flip of an edge. The orange edge e2 is not flippable.

triangulation obtained by removing the edge e from t and drawing the other diagonal of the face of degree 4 that appears. 
We say that flip(t, e) is obtained from t by flipping the edge e (cf. Fig. 1). Note that it is possible to flip a loop and to flip 
the root edge. The only case in which an edge cannot be flipped is if both of its sides are adjacent to the same face like the 
edge e2 in Fig. 1. In this case, flip(t, e) = t . Note that there is a natural bijection between E(t) and E (flip(t, e)). When there 
is no ambiguity, we shall sometimes treat an element of one of these two sets as if it belonged to the other.

The graph of triangulations of the sphere in which two triangulations are related if one can pass from one to the other 
by flipping an edge has already been studied in the type-III setting (that is, triangulations with neither loops nor multiple 
edges): it is connected [15] and its diameter is linear in n [8]. We extend these results to our setup in Lemma 12.

We define a Markov chain (Tn(k))k≥0 on Tn as follows: conditionally on (Tn(0), . . . , Tn(k)), let ek be a uniformly chosen 
edge of Tn(k). We take Tn(k + 1) = flip(Tn(k), ek). It is easy to see that the uniform measure on Tn is reversible, thus 
stationary for (Tn(k))k≥0, so this Markov chain will converge to the uniform distribution (the irreducibility is guaranteed by 
the connectedness results described above and the aperiodicity by the possible existence of non-flippable edges). It is then 
natural to estimate the mixing time of (Tn(k))k≥0 (see Chapter 4.5 of [12] for a proper definition of the mixing time). Our 
theorem provides a lower bound.

Theorem 1. There is a constant c > 0 such that for all n ≥ 3 the mixing time of the Markov chain (Tn(k))k≥0 is at least cn5/4.

Mixing times for other types of flip chains have also been investigated. For triangulations of a convex n-gon without 
inner vertices, it is known that the mixing time is polynomial and at least of order n3/2 (see [13,14]). In particular, our 
proof was partly inspired by the proof of the lower bound in [14]. Finally, see [3] for estimates on the mixing time of the 
flip walk on lattice triangulations, that is, triangulations whose vertices are points on a lattice and with Boltzmann weights 
depending on the total length of their edges.

The strategy of our proof is as follows: we start with two independent uniform triangulations with a boundary of length 
1 and n

2 inner vertices and glue them together along their boundaries. We obtain a triangulation of the sphere with a 
cycle of length 1 such that half of the vertices lie on each side of this cycle. We then start our Markov chain from this 
triangulation and discover one of the two sides of the cycle gradually by a peeling procedure. By using the estimates of 
Curien and Le Gall [5] and a result of Krikun about separating cycles in the UIPT [9], we show that after o(n5/4) flips, with 
high probability, the triangulation still has a cycle of length o(n1/4), on each side of which lies a proportion at least 1

4 of 
the vertices. But by a result of Le Gall and Paulin [11], this is not the case in a uniform triangulation (this is the discrete 
counterpart of the homeomorphicity of the Brownian map to the sphere), which shows that a time o(n5/4) is not enough 
to approach the uniform distribution.

2. Combinatorial preliminaries and couplings

For all n ≥ 3, we recall that Tn is the set of rooted type-I triangulations of the sphere with n vertices. For n ≥ 0 and 
p ≥ 1, we also write Tn,p for the set of triangulations with a boundary of length p and n inner vertices, that is, planar 
maps with n + p vertices in which all faces are triangles except one called the outer face whose boundary is a simple cycle 
of length p, equipped with a root edge such that the outer face touches the root edge on its right. We will sometimes refer 
to n and p as the volume and the perimeter of the triangulation.

The number of triangulations with fixed volume and perimeter can be computed by a result of Krikun. Here is a special 
case of the main theorem of [10] (the full theorem deals with triangulations with r + 1 boundaries but we only use the 
case r = 0):

#Tn,p = p(2p)!
(p!)2

4n−1(2p + 3n − 5)!!
n!(2p + n − 1)!! ∼

n→+∞ C(p)λ−n
c n−5/2, (1)

where λc = 1
12

√
3

and C(p) = 3p−2 p(2p)!
4
√

2π(p!)2 . In particular, a triangulation of the sphere with n vertices is equivalent after a root 
transformation to a triangulation with a boundary of length 1 and n − 1 inner vertices (more precisely we need to duplicate 
the root edge, add a loop inbetween and root the map at this new loop, see for example Fig. 2 in [4]), so
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Fig. 2. Illustration of Lemma 1. With high probability, there are two cycles γ ′ and γ such that the two green parts coincide.

#Tn = #Tn−1,1 = 2
4n−2 (3n − 6)!!

(n − 1)!n!! . (2)

For n ≥ 0 and p ≥ 1 we write Tn,p for a uniform triangulation with a boundary of length p and n inner vertices, and 
Tn for a uniform triangulation of the sphere with n vertices. We also recall that the UIPT, that we write T∞ , is an infinite 
rooted planar triangulation whose distribution is characterized by the following equality. For any rooted triangulation t with 
a hole of perimeter p,

P (t ⊂ T∞) = C(p)λ
|t|
c , (3)

where λc and the C(p) are as above, |t| is the total number of vertices of t and, by t ⊂ T∞ , we mean that T∞ can be 
obtained by filling the hole of t with an infinite triangulation with a boundary of length p.

In what follows, we will use several times peeling explorations of random triangulations, see section 4.1 of [5] for a 
general definition. Let t be a triangulation and A be a peeling algorithm, that is, a way to assign to every finite triangulation 
with one hole an edge on the boundary of the hole. We write tAj (t) for the part of t discovered after j steps of filled-in 
peeling following algorithm A . By “filled-in” we mean that everytime the peeled face separates the unknown part of the 
map in two connected components, we reveal the one with fewer vertices (if the two components have the same number 
of vertices, we reveal one component picked deterministically). If the map is infinite and one-ended, we reveal the bounded 
component.

From the enumeration formulas, it is possible to deduce precise coupling results between finite and infinite maps. The 
result we will need is similar to Proposition 12 of [2], but a bit more general since it deals with triangulations with a 
boundary. We recall that in a triangulation t of the sphere or the plane, the ball of radius r, that we write Br(t), is the 
triangulation with holes formed by those faces adjacent to at least one vertex lying at distance at most r − 1 from the 
root, along with all their edges and vertices. If t is infinite, the hull of radius r, which we write B•

r (t), is the union of Br(t)
and all the bounded connected components of its complement. If t is finite, it is the union of Br(t) and all the connected 
components of its complement except the one that contains the most vertices (if there is a tie, we pick deterministically 
a component among those which contain the most vertices). If T is a triangulation with a boundary, we adopt the same 
definitions but we replace the distance to the root by the distance to the boundary.

Lemma 1. Let pn = o(
√

n) and rn = o(n1/4) with pn = o(r2
n). Then there are r′

n = o(rn) and couplings between Tn,pn and T∞ such 
that

P

(
B•

rn
(T∞)\B•

r′
n
(T∞) ⊂ B•

rn
(Tn,pn )

)
−−−−−→
n→+∞ 1.

The above lemma follows from the following. There is a cycle γ ′ of length pn around the root of T∞ that lies inside of 
its hull of radius r′

n and a cycle γ in Tn,pn that stays at distance at most rn from its boundary, such that the part of the 
hull of radius rn of T∞ that lies outside of γ ′ is isomorphic to the part of Tn,pn that lies between its boundary and γ (see 
Fig. 2).

Proof. We start by describing a coupling between the UIPT and the UIPT with a boundary of length pn , which we write 
T∞,pn . We consider the peeling by layers L of the UIPT (see section 4.1 of [5]) and we write τpn for the first time at which 
the perimeter of the discovered region is equal to pn (note that this time is always finite since the perimeter can increase 
by at most 1 at each peeling step). By the spatial Markov property of the UIPT, the part that is still unknown at time τpn
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has the distribution of T∞,pn . Moreover, by the results of Curien and Le Gall (Theorem 1 of [5]), since pn = o(r2
n), we have 

τpn = o(r3
n). By using Proposition 9 of [5] (more precisely the convergence of H), we obtain that the smallest hull of T∞

containing tLτpn
(T∞) has radius o(rn) in probability. Hence, our result holds if we replace Tn,pn by T∞,pn .

Hence, it is enough to prove that there are couplings between T∞,pn and Tn,pn such that

P
(

B•
rn

(Tn,pn ) = B•
rn

(T∞,pn )
) −−−−−→

n→+∞ 1.

The proof relies on asymptotic enumeration results and is essentially the same as that of Proposition 12 of [2]: by using the 
above coupling of T∞,pn and T∞ , we can show that(

1√
n
|∂ B•

rn
(T∞,pn )|,

1

n
|B•

rn
(T∞,pn )|

)
(P )−−−−−→

n→+∞ (0,0).

Moreover, if qn = o(
√

n) and vn = o(n) and if tn is a triangulation with two holes of perimeters pn and qn (rooted on the 
boundary of the pn-gon) and vn vertices that is a possible value of B•

rn
(T∞,pn ) for all n ≥ 0, then

P
(

B•
rn

(Tn,pn ) = tn
)

P
(

B•
rn (T∞,pn ) = tn

) −−−−−→
n→+∞ 1

by the enumeration results, and we can conclude as in Proposition 12 of [2]. �
We will also need another coupling lemma where we do not compare hulls of a fixed radius, but rather the parts of 

triangulations that have been discovered after a fixed number of peeling steps.

Lemma 2. Let jn = o(n3/4), and let A be a peeling algorithm. Then there are couplings between Tn and T∞ such that

P

(
tA

jn
(Tn) = tA

jn
(T∞)

)
−−−−−→
n→+∞ 1.

Proof. We write P∞( j) and V∞( j) for respectively the perimeter and volume of tAj (T∞). By the results of [5], we have the 
convergences

1√
n

sup
0≤ j≤ jn

P∞( j) −−−−−→
n→+∞ 0 and

1

n
sup

0≤ j≤ jn

V∞( j) −−−−−→
n→+∞ 0 (4)

in probability, so there are pn = o(
√

n) and vn = o(n) such that

P (P∞( jn) ≤ pn and V∞( jn) ≤ vn) → 1.

But by the enumeration results (1), (2) and by (3), if tn is a rooted triangulation with perimeter at most pn and volume at 
most vn , we have

P

(
tA

jn
(Tn) = tn

)
P

(
tA

jn
(T∞) = tn

) = P
(
tn ⊂ Tn

)
P
(
tn ⊂ T∞

) −−−−−→
n→+∞ 1.

As in Proposition 12 of [2], this proves that the total variation distance between the distributions of tAjn (Tn) and tAjn (T∞)

goes to 0 as n → +∞, which proves our claim and the lemma. �
By combining this last lemma and the estimates (4), we immediately obtain estimates about the peeling process on finite 

uniform triangulations. We write Pn( j) and Vn( j) for the perimeter and volume of tAj (Tn).

Corollary 3. Let jn = o(n3/4). Then we have the following convergences in probability:

1√
n

sup
0≤ j≤ jn

Pn( j) −−−−−→
n→+∞ 0 and

1

n
sup

0≤ j≤ jn

Vn( j) −−−−−→
n→+∞ 0.

Finally, we show a result about small cycles surrounding the boundary in uniform triangulations with a perimeter small 
enough compared to their volume.

Lemma 4. Let pn = o(
√

n) and rn = o(n1/4) be such that pn = o(r2
n). Then for all ε > 0, the probability of the event

“there is a cycle γ in Tn,pn of length at most rn such that the part of Tn,pn lying between ∂Tn,pn and γ contains at most εn vertices”

goes to 1 as n → +∞.
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This result is not surprising. In the context of quadrangulations with a non-simple boundary, it is a consequence of the 
convergence of quadrangulations with boundaries to Brownian disks, see [1]. However, no scaling limit result is known yet 
for triangulations with boundaries. Hence, we will rely on a result of Krikun about small cycles in the UIPT, which we will 
combine with Lemma 1. Here is a restatement of Theorem 6 of [9].

Theorem 2 (Krikun). For all ε > 0, there is a constant C such that, for all r, with probability at least 1 − ε, there is a cycle of length at 
most Cr surrounding B•

r (T∞) and lying in B•
2r(T∞).

Note that Krikun deals with type-II triangulations, i.e. with multiple edges but no loops, but the decomposition used in 
[9] is still valid and even a bit simpler in the type-I setting, see [4]. The fact that the cycle stays in B•

2r (T∞) is not in the 
statement of the theorem in [9], but it is immediate from its proof.

Proof of Lemma 4. By Lemma 1 it is possible to couple T∞ with Tn,pn in such a way that

P

(
B•

rn
(T∞)\B•

r′
n
(T∞) ⊂ B•

rn

(
Tn,pn

)) −−−−−→
n→+∞ 1, (5)

where r′
n = o(rn). On the other hand, by Theorem 2, we have

P

(
there is a cycle γ of length ≤ rn in B•

2r′
n
(T∞) that surrounds B•

r′
n
(T∞)

)
−−−−−→
n→+∞ 1.

For n large enough, we have rn ≥ 2r′
n , so if such a γ exists, then it must stay in B•

rn
(T∞). Since rn = o(n1/4), the probability 

that the number of vertices lying inside of γ is greater than εn goes to 0 by Theorem 2 of [5]. But, if the event of (5) holds 
and if such a cycle exists in T∞ , then in Tn,pn there is a cycle γ of length at most rn , such that the part of Tn,pn lying 
between ∂Tn,pn and γ contains at most εn vertices. �
3. Proof of Theorem 1

Our main task will be to prove the following proposition.

Proposition 5. Let kn = o(n5/4). Then there are tn ∈ Tn and �n = o(n1/4) such that conditionally on Tn(0) = tn, the probability that 
there is a cycle of length at most �n that separates Tn(kn) in two parts of volume at least n

4 goes to 1 as n → +∞.

We first define the initial triangulation Tn(0) we will be interested in: let T 1
n (0) and T 2

n (0) be two independent uniform 
triangulations with a boundary of length 1 and with respectively �n−1

2 � and 
n−1
2 � inner vertices. We write Tn(0) for the 

triangulation obtained by gluing together the boundaries of T 1
n (0) and T 2

n (0).
We will now perform an exploration of the triangulation while it gets flipped: the part T 1

n will be considered as the 
“discovered” part and T 2

n as the “unknown” part of the map. More precisely, we define by induction T 1
n (k) and T 2

n (k) such 
that Tn(k) is obtained by gluing together the boundaries of T 1

n (k) and T 2
n (k). The two triangulations for k = 0 are defined 

above. Now assume we have constructed T 1
n (k) and T 2

n (k). Then:

• if ek lies inside of T 1
n (k) then T 1

n (k + 1) = flip(T 1
n (k), ek) and T 2

n (k + 1) = T 2
n (k),

• if ek lies inside of T 2
n (k) then T 1

n (k + 1) = T 1
n (k) and T 2

n (k + 1) = flip(T 2
n (k), ek),

• if ek ∈ ∂T 1
n (k), we write fk for the face of T 2

n (k) that is adjacent to ek , and we let T 2
n (k +1) be the connected component 

of T 2
n (k)\ fk with the largest volume and T 1

n (k + 1) = flip
(
Tn(k)\T 2

n (k + 1), ek
)
.

We now set P̃n(k) = |∂T 1
n (k)| and Ṽn(k) = ∣∣V

(
T 1

n (k)
)∣∣ − ∣∣V

(
T 1

n (0)
)∣∣ + 1. Note that Ṽn(k) is nondecreasing in k.

For k ≥ 0, we define a random variable e∗
k ∈ E(T 1

n (k)) ∪ {�}, where � is an additional state corresponding to all the edges 
not in E(T 1

n (k)), as follows: if ek lies inside or on the boundary of T 1
n (k), then e∗

k = ek , and if not then e∗
k = �. We also define 

Fk as the σ -algebra generated by the variables 
(
T 1

n (i)
)

0≤i≤k and (e∗
i )0≤i≤k−1.

Lemma 6. For all k, conditionally on Fk, the triangulation T 2
n (k) is a uniform triangulation with a boundary of length P̃n(k) and 


n+1
2 � − Ṽn(k) inner vertices.

Proof. We prove the lemma by induction on k. For k = 0 it is obvious by the definition of T 2
n (0). Let k ≥ 0 be such that the 

lemma holds for k.

• If e∗
k lies inside T 1

n (k), the result follows from the fact that T 2
n (k) = T 2

n (k + 1) and that conditionally on Fk , the triangu-
lation T 2

n (k) is independent of e∗ .
k
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• If e∗
k = �, it follows from the invariance of the uniform measure on Tn,p under flipping of a uniform edge among those 

which do not lie on the boundary.
• If e∗

k ∈ ∂T 1
n (k), this is a standard peeling step: by invariance under rerooting of a uniform triangulation with fixed 

perimeter and volume, conditionally on Fk and ek , the triangulation T 2
n (k) rooted at ek is uniform. Hence, if the third 

vertex of the face fk of T 2
n (k) adjacent to ek lies inside of T 2

n (k), the remaining part of T 2
n (k) is a uniform triangulation 

with a boundary of length P̃n(k) + 1 and 
n+1
2 � − Ṽn(k) − 1 inner vertices. If the third vertex of fk lies on ∂T 2

n (k), 
then the face fk separates T 2

n (k) in two independent uniform triangulations with fixed perimeters and volumes, and 
the lemma follows. �

We now define the stopping times τ j as the times at which the flipped edge lies on the boundary of the unknown part 
of the map, that is, the times k at which we discover new parts of T 2

n (k): we set τ0 = −1 and τ j+1 = inf{k > τ j |ek ∈ ∂T 1
n (k)}

for j ≥ 0. We also write Pn( j) = P̃n(τ j + 1) and Vn( j) = Ṽn(τ j + 1).
Then Lemma 6 shows that (Pn, Vn) is a Markov chain with the same transitions as the perimeter and volume processes 

associated with the peeling process of a uniform triangulation with a boundary of length 1 and 
n−1
2 � inner vertices. Hence, 

Corollary 3 provides estimates for this process. Our next lemma will allow us to estimate the times τ j .

Lemma 7. Let kn = o(n5/4). Then for all ε > 0, we have

P
(
τεn3/4 > kn

) −−−−−→
n→+∞ 1.

Proof. Conditionally on Pn , the variables τ j+1 − τ j are independent geometric variables with respective parameters Pn( j)
n . 

Hence, τεn3/4 dominates the sum Sn of εn3/4 i.i.d. geometric variables with parameter Q n = 1
n max0≤ j≤εn3/4 Pn( j). We have

E[Sn|Pn] = εn3/4 Q n = εn5/4 × 1√
n

max
0≤ j≤εn3/4

Pn( j).

By the results of [5], the factor 1√
n

max0≤ j≤εn3/4 Pn( j) converges in distribution, so E[Sn|Pn]
εn5/4 converges in distribution so 

E[Sn|Pn]
kn

→ +∞ in probability. By the weak law of large numbers, we get Sn
kn

→ +∞ in probability so τ
εn3/4

kn
→ +∞ in 

probability. �
By combining Corollary 3 and Lemma 7, we get the following result.

Lemma 8. Let kn = o(n5/4). Then we have the convergences

1√
n

P̃n(kn) −−−−−→
n→+∞ 0 and

1

n
Ṽn(kn) −−−−−→

n→+∞ 0

in probability.

Proof. By Lemma 7, there is a deterministic sequence jn = o(n3/4) such that P 
(
τ jn > kn

) → 1. This means that with proba-
bility going to 1 as n → +∞ there is J ≤ jn such that τ J < kn ≤ τ J+1 so

P̃n(kn) = Pn( J ) ≤ sup
0≤ j≤ jn

Pn( j) and Ṽn(kn) = Vn( J ) ≤ sup
0≤ j≤ jn

Vn( j).

But we know from Corollary 3 that(
1√
n

sup
0≤ j≤ jn

Pn( j),
1

n
sup

0≤ j≤ jn

Vn( j)

)
(P )−−−−−→

n→+∞ 0,

which proves Lemma 8. �
So T 2

n (kn) has the distribution of Tn/2−Ṽn(kn), P̃n(kn) and there is pn = o(
√

n) such that

P

(
P̃n(kn) < pn and n/2 − Ṽn(kn) >

n

3

)
−−−−−→
n→+∞ 1.

Let rn be such that rn = o(n1/4) and pn = o(r2
n) (take for example rn = n1/8 p1/4

n ). By Lemma 4, with probability going to 1 as 
n → +∞, there is a cycle γ in T 2

n (kn) of length at most rn such that the part of T 2
n (kn) lying between ∂T 2

n (kn) and γ has 
volume at most n

6 . Moreover, we have Ṽn(kn) = o(n) in probability by Lemma 8, so the two parts of Tn(kn) separated by γ
both have volume at least n , which proves Proposition 5.
4
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The proof of our main theorem is now easy: let T ��
n be the set of the triangulations t of the sphere with n vertices 

in which there is a cycle of length at most �n that separates t in two parts of volume at least n
4 . Let also kn = o(n5/4). By 

Proposition 5, we have

P
(
Tn(kn) ∈ T ��

n

) −−−−−→
n→+∞ 1,

whereas by Corollary 1.2 of [11], if Tn(∞) denotes a uniform variable on Tn , we have

P
(
Tn(∞) ∈ T ��

n

) −−−−−→
n→+∞ 0.

Hence, the total variation distance between the distributions of Tn(kn) and Tn(∞) goes to 1 as n → +∞ so the mixing time 
is greater than kn for n large enough. Since this is true for any kn = o(n5/4), the mixing time must be at least cn5/4 with 
c > 0.

We end this paper by a few remarks about our lower bound and an open question.

Remark 9. We proved a lower bound on the mixing time in the worst case, but our proof still holds for the mixing time from 
a typical starting point. We just need to fix ε > 0 small, take as initial condition a uniform triangulation Tn(0) conditioned 
on 

∣∣∣∂ B•
n1/4(Tn(0))

∣∣∣ ≤ ε
√

n and n
3 ≤

∣∣∣B•
n1/4(Tn(0))

∣∣∣ ≤ 2n
3 and let T 1

n (0) = B•
n1/4(Tn(0)). The event on which we condition has 

probability bounded away from 0 (by the results of [5] and coupling arguments) and after time o(n5/4) there is still a 
separating cycle of length O (ε1/2n1/4).

Remark 10. Here is a back-of-the-envelope computation that leads us to believe the lower bound we give is sharp if we 
start from a typical triangulation. The lengths of the geodesics in a uniform triangulation of volume n are of order n1/4, so 
if we fix two vertices x and y the probability that a flip hits the geodesic from x to y is roughly n−3/4. Hence, if we do n5/4

flips, about n1/2 of them will affect the distance between x and y. If we believe that this distance evolves roughly like a 
random walk, it will vary of about 

√
n1/2 = n1/4, which shows we are at the right scale. Of course, there are many reasons 

why this computation seems hard to be made rigorous, but it does not seem to be contradicted by numerical simulations.

Finally, note that even in the simpler case of triangulations of a polygon, the lower bound n3/2 is believed to be sharp 
but the best known upper bound [13] is only n5+o(1) . In our case we were not even able to prove the following.

Conjecture 11. The mixing time of (Tn(k))k≥0 is polynomial in n.
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Appendix A. Connectedness of the flip graph for type-I triangulations

In this appendix, we show that the Markov chain we study is indeed irreducible.

Lemma 12. Let Gn be the graph whose vertex set is Tn and where two triangulations are related if one can pass from one to the other 
by a flip. Then Gn is connected and its diameter is linear in n.

Proof. It is proved in [15] that the flip graph for type-III triangulations is connected, and in [8] that its diameter is linear 
in n. Hence, it is enough to show that any triangulation is connected to a type-III triangulation in Gn by a linear number of 
edges. If t is a finite triangulation with loops, it contains a minimal loop, that is, a loop dividing the sphere in two parts, one 
of which contains no loop. By flipping a minimal loop, we delete a loop without to create any new one, so we make the 
number of loops decrease and we can delete all loops in a linear number of flips. Moreover, if t contains no loop and there 
are two edges e1, e2 between the same pair of vertices, then flipping e1 does not create any loop or additional multiple 
edges, so we can also delete all multiple edges in a linear number of flips. �
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