
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 452–454
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic geometry

The full automorphism group of T

Le groupe complet des automorphismes de T

Indranil Biswas a, Subramaniam Senthamarai Kannan b, 
Donihakalu Shankar Nagaraj c

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
b Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri, Kelambakkam 603103, India
c The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 November 2016
Accepted after revision 27 February 2017
Available online 11 March 2017

Presented by Claire Voisin

Let G be the wonderful compactification of a simple affine algebraic group G of adjoint 
type defined over C. Let T ⊂ G be the closure of a maximal torus T ⊂ G . We prove that 
the group of all automorphisms of the variety T is the semi-direct product NG (T ) � D , 
where NG (T ) is the normalizer of T in G and D is the group of all automorphisms of the 
Dynkin diagram, if G �= PSL(2, C). Note that if G = PSL(2, C), then T = CP

1 and so in this 
case Aut(T ) = PSL(2, C).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit G la compactification magnifique d’un groupe algébrique affine simple G de type 
adjoint défini sur C. Soit T ⊂ G la clôture d’un tore maximal T ⊂ G . Si G �= PSL(2, C), 
nous montrons que le groupe de tous les automorphismes de la variété T est le produit 
semi-direct NG (T ) � D , où NG (T ) est le normalisateur de T dans G et D est le groupe de 
tous les automorphismes du diagramme de Dynkin. Remarquez que si G = PSL(2, C), alors 
T = CP

1 et donc dans ce cas Aut(T ) = PSL(2, C).
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let G be a simple affine algebraic group of adjoint type defined over the field of complex numbers. De Concini and 
Procesi constructed a very important compactification of G [5, p. 14, 3.1, THEOREM]; it is known as the wonderful com-
pactification. The wonderful compactification of G will be denoted by G . Fix a maximal torus T of G , and denote by T
the closure of the variety T in the wonderful compactification G [2, §1]. Let Aut(T ) denote the group of all holomorphic 
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automorphisms of T . For G �= PSL(2, C), the connected component of Aut(T ) containing the identity element coincides with 
T acting on T by translations [1, Theorem 3.1]. Our aim here is to compute the full automorphism group Aut(T ).

It may be noted that T is stable under the conjugation of the normalizer NG (T ) of T in G . This indicates that Aut(T )

needs not be connected.
For G different from PSL(2, C), we prove that Aut(T ) is the semi-direct product NG(T ) � D , where NG(T ) is the normal-

izer of T in G , and D is the group of all automorphisms of the Dynkin diagram (see Theorem 3.1).

2. Lie algebra and algebraic groups

We recall the set-up of [1]. Throughout this Note G will denote an affine algebraic group over C such that G is simple 
and of adjoint type (equivalently, the center of the simple group is trivial). We will always assume that G �= PSL(2, C).

Fix a maximal torus T of G . The group of all characters of T will be denoted by X(T ). The Weyl group of G with respect 
to T is defined to be W := NG(T )/T , where NG(T ) is the normalizer of T in G . Let

R ⊂ X(T ) (1)

be the root system of G with respect to T . For a Borel subgroup B of G containing the maximal torus T , let R+(B) denote 
the set of positive roots determined by T and B . Let

S = {α1 , · · · ,αn}
be the set of simple roots in R+(B), where n is the rank of G . Let B− denote the opposite Borel subgroup of G determined 
by B and T . So in particular B 

⋂
B− = T . For any α ∈ R+(B), let sα ∈ W be the reflection corresponding to α.

The Lie algebras of G , T and B will be denoted by g, t and b respectively. The dual of the real form tR of t is X(T ) ⊗R =
HomR(tR, R).

Now, let σ be the involution of G × G defined by σ(x , y) = (y , x). We note that the diagonal subgroup �(G) of G × G
is the subgroup of fixed points of σ . The subgroup T × T ⊂ G × G is a σ -stable maximal torus of G × G , while B × B− is a 
Borel subgroup of G ×G; this Borel subgroup B × B− has the property that σ(α) ∈ −R+(B × B−) for every α ∈ R+(B × B−).

The group G is identified with the symmetric space (G × G)/�(G). Let G denote the corresponding wonderful compact-
ification of G (see [5, p. 14, 3.1, THEOREM]). In particular G × G acts on G . Let T be the closure of T in G . The action of the 
subgroup NG(T ) ⊂ G = �(G) on G preserves T .

3. The automorphism group of T

Let Aut(T ) denote the group of all holomorphic automorphisms of T ; any holomorphic automorphism is algebraic. Let 
Aut0(T ) ⊂ Aut(T ) be the connected component containing the identity element. The translation action of T on itself pro-
duces an isomorphism

ρ : T −→ Aut0(T ) (2)

[1, p. 786, Theorem 3.1].

Theorem 3.1. The automorphism group Aut(T ) is the semi-direct product NG(T ) � D, where NG(T ) is the normalizer of T in G, and 
D is the group of all automorphisms of the Dynkin diagram of G.

Proof. For notational convenience denote

A = Aut(T ) .

Note that T is stable under the conjugation action of NG (T ) on G . Let

�̃ ⊂ tR (3)

be the fan of the toric variety T . This �̃ consists of cones associated with the Weyl chambers (see [3, p. 187, 6.1.6, Lemma]). 
Note that any automorphism σ of the Dynkin Diagram associated with the set S ⊂ R of simple roots with respect to (T , B)

preserves the fan �̃. Therefore, we have [4, p. 47]

NG(T )� D ⊂ A .

Next we will show that NG (T ) � D = A.
Since ρ in (2) is an isomorphism, it follows immediately that T is a normal subgroup of A. Therefore, the intersection 

T
⋂

g(T ) is a T stable open dense subset of T for every element g ∈ A. Consequently, the open subset T ⊂ T is preserved 
by the natural action of A on T . Consequently, every automorphism g ∈ A can be expressed as

g = lt0 h , (4)
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where lt0 is the left translation by some t0 ∈ T , and h ∈ A satisfies the condition that h(1) = 1, with 1 being the identity 
element of T .

By a result of Rosenlicht, the action of the h (in (4)) on T is by group automorphism (see [7, p. 986, Theorem 3]). 
Therefore, h gives an automorphism of X(T ), and hence h gives an automorphism of tR . Since T is left invariant under the 
action of h, the toric variety data of T is preserved by h. Hence we see that the automorphism of tR given by h preserves 
the fan �̃ in (3). Since �̃ is given by the Weyl chambers and its faces, we see that the induced action of h on X(T ) leaves 
the root system R of G in (1) invariant. Consequently, h produces an automorphism of the root system R .

On the other hand, the automorphism group Aut(R) of the root system R is precisely

NG(T )/T � D = W � D

(see [6, p. 231, (A.8)]). �
Corollary 3.2. The quotient group Aut(T )/Aut0(T ) is isomorphic to Aut(R) = W � D.

Remark 3.3. The automorphism group D is trivial except for the types A� with � ≥ 2, D� and E6 (see [6, p. 231, (A.8)]).

Remark 3.4. We note that the structure of the automorphism group of a complete simplicial toric variety is described by 
D.A. Cox (see [4, p. 48, Corollary 4.7]).
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