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We show that for an L2 drift b in two dimensions, if the Hardy norm of div b is small, then 
the weak solutions to �u + b · ∇u = 0 have the same optimal Hölder regularity as in the 
case of divergence-free drift, that is, u ∈ Cα

loc for all α ∈ (0, 1).
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons que, pour une dérive b ∈ L2
loc(R

2; R2), si la norme de Hardy de div b
est petite, alors les solutions faibles de �u + b · ∇u = 0 (en dimension deux) ont la même 
régularité Hölder que dans le cas de la dérive incompressible, c’est-à-dire que u ∈ Cα

loc pour 
tout α ∈ (0, 1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the main result

In this note, we revisit the local (optimal) Hölder continuity of W 1,2 scalar solutions to

�u + b · ∇u = 0 (1.1)

in two dimensions where the drift b = (b1, b2) is an L2
loc vectorfield in R2. When div b = 0, Filonov [3, Theorem 1.2] shows 

that u ∈ W 2,q
loc for all q ∈ (1, 2) and hence the optimal Hölder regularity for u: u ∈ Cα

loc for all α ∈ (0, 1). In this note, we 
show that the same conclusions hold if the H1(R2) Hardy norm of div b is small. The Hardy space H1(R2) will be recalled 
in Section 2.
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Theorem 1.1. Let � be an open, bounded and connected domain in R2. Let b ∈ L2
loc(R

2; R2) and let u ∈ W 1,2(�) satisfy (1.1) in �
in the sense of distributions. There is a small, positive constant ε0 such that if ‖div b‖H1(R2) ≤ ε0 , then u ∈ W 2,q

loc (�) for all q ∈ (1, 2)

and hence, u ∈ Cα
loc(�) for all α ∈ (0, 1).

If the condition div b = 0 is dropped, then, as pointed out in [3], the solutions to (1.1) are not continuous nor bounded in 
general. Note that Eq. (1.1) with the divergence-free drift b appears in various models in fluid mechanics; see, for example [4,
9] and the references therein. These papers also establish several regularity results, including Hölder continuity, for solutions 
to (1.1) when the divergence-free drift b has low integrability. In 2D, in order to obtain the Hölder continuity of the solutions 
u ∈ W 1,2 to (1.1), that is, u ∈ Cα

loc(�) for some α ∈ (0, 1), it suffices to assume that div b ∈ H1(R2). This follows from 
revisiting the arguments of Bethuel [1].

Denote the rotation of the gradient vector in 2D by ∇⊥v = (−∂2 v, ∂1 v). Theorem 1.1 easily gives:

Corollary 1.2. Let � be an open, bounded and connected domain in R2 . Assume that b = h∇⊥v where h ∈ L∞(�) ∩ W 1,2(�) and 
v ∈ W 1,2(�). Let u ∈ W 1,2(�) satisfy (1.1) in �. Then u ∈ W 2,q

loc (�) for all q ∈ (1, 2) and hence, u ∈ Cα
loc(�) for all α ∈ (0, 1).

Remark 1.3. The drift b in Corollary 1.2 satisfies div b ∈ H1 and thus the result of Bethuel [1] (see also [5] for system) already implies 
the Hölder continuity of u, that is, u ∈ Cα

loc(�) for some α ∈ (0, 1). The novelty of Corollary 1.2 is that it gives further and optimal 
regularity results for u.

Our proof of Theorem 1.1 uses the Uhlenbeck–Rivière decomposition (also known as the nonlinear Hodge decomposition) 
and the integration by compensation to convert (1.1) into a conservation law. This circle of ideas was inspired by Rivière’s 
proof of Heinz–Hildebrandt’s conjecture [7]. We also give another proof of Theorem 1.1 using the uniqueness result for (1.1)
following Filonov [3]. It is interesting to note that, although (1.1) is linear, our arguments are non-linear. A key ingredient in the 
proof of Theorem 1.1 is the local structure of the L2 vectorfields b whose div b have small Hardy norm.

Theorem 1.4. Assume that � = B1(0) ⊂ R
2 and b ∈ L2

loc(R
2; R2). There exists a positive constant ε1 with the following property. If 

‖b‖L2(�) + ‖div b‖H1(R2) ≤ ε1 , then there exist A ∈ W 1,2(�) ∩ L∞(�) and B ∈ W 1,2(�) such that A−1 ∈ L∞(�), A = 1 on ∂�, ∫
�

B = 0, and

b = A−1∇ A + A−1∇⊥B.

The rest of the note is organized as follows. We recall Hardy spaces and related Wente’s estimates in Sect. 2. Assuming 
Theorem 1.4, we prove Theorem 1.1 in Sect. 3. We prove Theorem 1.4 in Sect. 4.

2. Hardy spaces and related Wente’s estimates

First, we recall the Hardy space H1(R2), following Hélein [6, Section 3.2]. For any function f ∈ L1(R2), we denote 
the Riesz transforms R j f ( j = 1, 2) of f by R̂ j f (ξ) = ξ j

|ξ | f̂ (ξ) (ξ = (ξ1, ξ2) ∈ R
2), where f̂ is the Fourier transform of f : 

f̂ (ξ) = (2π)−1
∫
R2 e−ix·ξ f (x)dx.

Definition 2.1. The Hardy space H1(R2) with norm ‖ · ‖H1(R2) is defined by

H1(R2) = { f ∈ L1(R2) : ‖ f ‖H1(R2) = ‖ f ‖L1(R2) + ‖R1 f ‖L1(R2) + ‖R2 f ‖L1(R2) < ∞}.

A basic observation is the following theorem, due to Coifman–Lions–Meyer–Semmes [2]:

Theorem 2.2. ([6, Theorem 3.2.2]) If u, v ∈ W 1,2(R2) then ∇u · ∇⊥v ∈ H1(R2). Moreover, there is a uniform constant C such that 
the following estimate holds:

‖∇u · ∇⊥v‖H1(R2) ≤ C‖∇u‖L2(R2)‖∇v‖L2(R2).

We recall the following regularity result concerning solutions to the Laplace equation with Hardy right-hand side. The 
following theorem follows through combining Theorems 3.3.4, 3.3.8 and together Eq. (3.38) in [6].

Theorem 2.3. Let � be an open subset of R2 , with C1 boundary. Let f ∈H1(R2), and φ ∈ L1
loc(�) be a solution to

�φ = f in �, and φ = 0 on ∂�.



N.Q. Le / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 439–446 441
Then φ ∈ W 1,2
0 (�) ∩ C(�) and there is a constant depending only on �, C(�), such that

‖φ‖L∞(�) + ‖∇φ‖L2(�) ≤ C(�)‖ f ‖H1(R2).

Finally, we recall the following estimates for boundary value problems with Jacobian structure right-hand side in the 
theory of integration by compensation, due to Wente’s [10]; see also [2].

Lemma 2.4. Let � be an open subset of R2 , with C1 boundary. Suppose that u, v ∈ W 1,2(�). Let w be the unique solution in W 1,p(�)

for 1 ≤ p < 2 to the equation �w = ∇u · ∇⊥v in �, either with the Dirichlet condition w = 0 on ∂�, or with the Neumann boundary 
condition ∂ w

∂ν = 0 on ∂� and 
∫
�

w = 0. Then w belongs to C(�) ∩ W 1,2(�), and there is a constant C depending on � such that

‖w‖L∞(�) + ‖∇w‖L2(�) + ‖D2 w‖L1(�) ≤ C‖∇u‖L2(�)‖∇v‖L2(�).

3. Proofs of Theorem 1.1 and Corollary 1.2

Assuming Theorem 1.4, we prove Theorem 1.1 and Corollary 1.2 in this section. Let ε1 be the positive number given by 
Theorem 1.4. Let ε0 = ε1/2. Let u ∈ W 1,2(�) satisfy (1.1) in �.

3.1. Rescaling

Theorem 1.1 and Corollary 1.2 are of local nature, so it suffices to prove the optimal Hölder continuity of u in a small 
ball Br(x0) ⊂ � round each x0 ∈ �. We rescale Eq. (1.1) in Br(x0) to B1(0) by setting

ũ(x) = u(x0 + rx), b̃(x) = rb(x0 + rx).

Then ũ ∈ W 1,2(B1(0)) solves

−�ũ = b̃ · ∇ũ in B1(0). (3.2)

Furthermore,

‖b̃‖L2(B1(0)) = ‖b‖L2(Br(x0)) and ‖div b̃‖H1(R2) = ‖div b‖H1(R2). (3.3)

By the Dominated Convergence theorem, ‖b‖L2(Br (x0)) → 0 as r → 0. Thus, we can fix a radius r > 0 so that ‖b‖L2(Br (x0)) < ε0.

From now on, we can assume � = B1(0) with the following smallness condition on ‖b̃‖L2(B1(0)):

‖b̃‖L2(B1(0)) < ε0. (3.4)

3.2. Proofs of Theorem 1.1

Proof of Theorem 1.1 via conservation laws. Suppose that ‖div b‖H1(R2) ≤ ε0. Then from (3.3) and (3.4), we have

‖b̃‖L2(B1(0)) + ‖div b̃‖H1(R2) ≤ 2ε0 = ε1.

Applying Theorem 1.4, we find A ∈ W 1,2(B1(0)) ∩ L∞(B1(0)) and B ∈ W 1,2(B1(0)) such that A−1 ∈ L∞(B1(0)), A = 1 on 
∂ B1(0), 

∫
B1(0)

B = 0, and

b̃ = A−1∇ A + A−1∇⊥B.

This together with (3.2) gives

div (A∇ũ − B∇⊥ũ) = 0.

Thus, we have just converted (1.1) into a conservation law. By [8, Theorem 4.3] or the proof of [7, Theorem 1.1], ũ ∈
W 1,p

loc (B1(0)) for all p ∈ (1, ∞). Now, the right-hand side of (3.2) belongs to Lq
loc(B1(0)) for all q ∈ (1, 2), and hence ũ ∈

W 2,q
loc (B1(0)) for all q ∈ (1, 2). Therefore, by the Sobolev embedding theorem, ũ ∈ Cα

loc(B1(0)) for all α ∈ (0, 1). Rescaling 
back, we obtain the desired regularity for u. �
Proof of Theorem 1.1 via uniqueness. Instead of using [7,8], we can give a direct and short proof of Theorem 1.1 using the 
uniqueness approach of Filonov [3]. In [3, Theorem 1.2], Filonov proved1 that W 1,2 solutions to (3.2) belong to W 2,q

loc (B1(0))

for all 1 < q < 2 provided that the equation

1 Our sign is different from [3]. Filonov considered −�v + b̃ · ∇v = 0.
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�v + b̃ · ∇v = 0 in B1(0), with v = 0 on ∂ B1(0). (3.5)

has a unique solution v = 0 in W 1,2
0 (B1(0)). We prove that this is indeed the case in the context of Theorem 1.1. As above, 

we have b̃ = A−1(∇ A + ∇⊥B) and hence (3.5) becomes{
div (A∇v) + ∇⊥B · ∇v = 0 in B1(0),

v = 0 on ∂ B1(0).
(3.6)

Since A−1 ∈ L∞(B1(0)), we prove that v = 0 by showing 
∫

B1(0)

A|∇v|2 = 0. Following the idea of the proof of [3, Lemma 2.6], 

we choose a sequence ψn ∈ C∞
0 (B1(0)) such that ψn → v in W 1,2(B1(0)). From∫

B1(0)

A|∇v|2 =
∫

B1(0)

A∇v · ∇ψn +
∫

B1(0)

A∇v · (∇v − ∇ψn)

≤
∫

B1(0)

A∇v · ∇ψn + ‖A‖L∞(B1(0))‖∇v‖L2(B1(0))‖∇v − ∇ψn‖L2(B1(0)),

and ‖∇v − ∇ψn‖L2(B1(0)) → 0 when n → ∞, it remains to show that∫
B1(0)

A∇v · ∇ψn → 0 when n → ∞. (3.7)

To see this, multiplying both sides of (3.6) by ψn and using that∫
B1(0)

∇⊥B · ∇ψnψn =
∫

B1(0)

∇⊥B · ∇(ψ2
n /2) = 0

which follows from integrating by parts and div ∇⊥B = 0, we obtain∫
B1(0)

A∇v · ∇ψn =
∫

B1(0)

∇⊥B∇vψn =
∫

B1(0)

∇⊥B · ∇(v − ψn)ψn.

Since div (∇⊥B) = 0, by [3, Lemma 2.4], and the fact that ψn → v in W 1,2(B1(0)), we have∫
B1(0)

∇⊥B · ∇(v − ψn)ψn ≤ C‖∇B‖L2(B1(0))‖∇v − ∇ψn‖L2(B1(0))‖∇ψn‖L2(B1(0)) → 0 when n → ∞.

Therefore, we obtain (3.7) and the proof of Theorem 1.1 is complete. �
Proof of Corollary 1.2. Suppose that b = h∇⊥v where h ∈ L∞(�) ∩ W 1,2(�) and v ∈ W 1,2(�). After having rescaled u and 
b in Section 3.1, we also rescale h and v as follows:

h̃(x) = h(x0 + rx) − c1, ṽ(x) = v(x0 + rx) − c2

where c1 and c2 are constants such that 
∫

B1(0)
h̃ = ∫

B1(0)
ṽ = 0. Note that ‖∇ ṽ‖L2(B1(0)) = ‖∇v‖L2(Br (x0)) and that, by Poin-

caré’s inequality, we have

‖ṽ‖W 1,2(B1(0)) ≤ C‖∇ ṽ‖L2(B1(0)) ≤ C‖∇v‖L2(Br(x0)). (3.8)

Similarly, we have

‖h̃‖W 1,2(B1(0)) ≤ C‖∇h‖L2(Br(x0)) (3.9)

We can extend h̃ and ṽ to be compactly supported functions in R2 such that h̃ ∈ L∞(R2) ∩ W 1,2(R2), ̃v ∈ W 1,2(R2), 
‖h̃‖L∞(R2) ≤ C‖h̃‖L∞(B1(0)) , and

‖h̃‖W 1,2(R2) ≤ C‖h̃‖W 1,2(B1(0)), ‖ṽ‖W 1,2(R2) ≤ C‖ṽ‖W 1,2(B1(0)). (3.10)

With these extensions, we have, by Theorem 2.2, div b̃ = ∇h̃ · ∇⊥ ṽ ∈H1(R2) and

‖div b̃‖H1(R2) ≤ C‖∇h̃‖L2(R2)‖∇ ṽ‖L2(R2).
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It follows from (3.8), (3.9) and (3.10) that

‖div b̃‖H1(R2) ≤ C‖∇h‖L2(Br(x0))‖∇v‖L2(Br(x0)).

Using the Dominated Convergence theorem, we can now further reduce the small radius r in Section 3.1 so that 
‖div b̃‖H1(R2) ≤ ε0. Applying Theorem 1.1 to (3.2), we obtain the conclusion of the corollary. �
4. Proof of Theorem 1.4

4.1. Uhlenbeck–Rivière decomposition

Recall that � = B1(0) and div b ∈ H1(R2). Let τ = (−y, x), and ν = (x, y) denote the unit tangential and normal vector-
fields on ∂�. We use the Hodge decomposition

b = ∇⊥ξ − ∇p, where p = 0 on ∂�. (4.11)

To do this, let p ∈ L1
loc(�) solve

−�p = div b in �, p = 0 on ∂�.

Because div b ∈H1(R2), by Theorem 2.3, we have p ∈ W 1,2(�) ∩ L∞(�). Furthermore,

‖p‖L∞(�) + ‖∇p‖L2(�) ≤ C‖div b‖H1(R2). (4.12)

With the above p, we have div (b +∇p) = 0, so we can find ξ ∈ W 1,2(�) such that (4.11) holds. Now, suppose that we have 
a smallness condition on b, precisely, for some small ε1 > 0 to be determined,

‖b‖L2(�) + ‖div b‖H1(R2) ≤ ε1. (4.13)

From (4.12) and (4.11), we have

‖p‖2
L∞(�) +

∫
�

|∇ξ |2 +
∫
�

|∇p|2 ≤ C

⎛⎝∫
�

|b|2 + ‖div b‖2
H1(R2)

⎞⎠ . (4.14)

Inspired by Rivière [7,8], we now rewrite (4.11) into the Uhlenbeck–Rivière decomposition (also known as the nonlinear 
Hodge decomposition). Let P = ep . Then (4.11) becomes a nonlinear decomposition

b = ∇⊥ξ − P−1∇ P . (4.15)

We will use (4.15) to convert (1.1) into a conservation law. Note that, ∇ P = ep∇p, ∇ P−1 = −e−p∇p.
Let ε ∈ (0, 1

100 ) be a small constant to be chosen in Lemma 4.1 below. With this ε, we choose ε1 small so that from (4.13)
and (4.14), we have∫

�

|∇ξ |2 + |∇ P |2 + |∇ P−1|2 < ε (4.16)

and

‖P‖L∞(�) ≤ 1 + ε. (4.17)

It follows that

1/10 ≤ ‖P‖L∞(�),‖P−1‖L∞(�) ≤ 10. (4.18)

Recall that P = 1 on ∂�. To prove Theorem 1.4, it remains to prove the following lemma.

Lemma 4.1. Assume that (4.16) and (4.17) hold. If ε is sufficiently small, then there exist A ∈ W 1,2(�) ∩ L∞(�) and B ∈ W 1,2(�)

such that A−1 ∈ L∞(�), A = 1 on ∂�, 
∫
�

B = 0, and

Ab = ∇ A + ∇⊥B, (4.19)

with

‖A P − 1‖2
L∞(�) + ‖∇(A P )‖2

L2(�)
+ ‖∇B‖2

L2(�)
≤ Cε.
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4.2. Proof of Lemma 4.1

Proof of Lemma 4.1. Notice that, by an approximation argument using the standard mollifications, it suffices to prove the 
lemma for smooth vector fields b. In this case, we have on ∂�

b · τ = (∇⊥ξ − ∇p) · τ = ∂ξ

∂ν
. (4.20)

The function ξ in (4.11) can be chosen to be the smooth solution to

−�ξ = curl b = ∂2b1 − ∂1b2 in �,
∂ξ

∂ν
= b · τ on ∂� and

∫
�

ξ = 0.

In what follows, we will use Eq. (4.20). We use a fixed point argument as in Rivière [7,8]. Let P be as in Sect. 4.1. With 
each A ∈ W 1,2(�), we associate Ã = A P . Suppose that A and B are solutions to (4.19). Then, recalling (4.15), and noting 
that ∇ P P−1 = −P∇ P−1, we have

∇ Ã − Ã∇⊥ξ + ∇⊥B.P = 0 and ∇⊥B = Ab − ∇ A = A∇⊥ξ + A P∇ P−1 − ∇ A.

Taking the divergence of the first equation and taking the curl (= −∇⊥) of the second equation yield:

� Ã = ∇ Ã · ∇⊥ξ − ∇⊥B · ∇ P and �B = ∇⊥(A∇⊥ξ + A P∇ P−1) = div (A∇ξ) + ∇⊥ Ã · ∇ P−1.

We now proceed as follows.

Step 1. We prove, provided ε is sufficiently small, the existence of a solution ( Ã, B) to the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
� Ã = ∇ Ã · ∇⊥ξ − ∇⊥B · ∇ P in �,

�B = div ( Ã∇ξ P−1) + ∇⊥ Ã · ∇ P−1 in �,

Ã = 1 and ∂ B
∂ν = b · τ on ∂�,∫

�
B = 0,

(4.21)

with

‖ Ã − 1‖2
L∞(�) + ‖∇ Ã‖2

L2(�)
+ ‖∇B‖2

L2(�)
≤ Cε.

Step 2. We show that (4.21) implies

∇ Ã − Ã∇⊥ξ + ∇⊥B·P = 0. (4.22)

Let us indicate how Steps 1 and 2 complete the proof of Lemma 4.1. Assuming (4.22), we find from Ã = A P that P∇ A + A∇ P −
A P∇⊥ξ + ∇⊥B·P = 0. Since P is invertible, we obtain

∇ A + A∇ P P−1 − A∇⊥ξ + ∇⊥B = 0.

Therefore, recalling (4.15), we obtain (4.19). The last estimate in Lemma 4.1 follows from the last estimate in Step 1 and 
from the fact that Ã = A P . The proof of Lemma 4.1 is complete.

Proof of Step 1. To prove the existence of a solution ( Ã, B) to (4.21), we will use a fixed-point argument as in Rivière [7,8]. 
Let us denote for g ∈ H1/2(∂�) the space W 1,2

g (�) = {u ∈ W 1,2(�), u = g on ∂�}. Consider the map f ( Â, B̂) = ( Ã, B) from

X =
(

W 1,2
1 (�) ∩ L∞(�)

)
× W 1,2(�)

into itself, where for given ( Â, B̂) ∈ X , the pair ( Ã, B) solves the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�( Ã − 1) = ∇( Â − 1) · ∇⊥ξ − ∇⊥ B̂ · ∇ P in �,

�(B − B0) = div (( Â − 1)∇ξ P−1) + ∇⊥( Â − 1) · ∇ P−1 in �,

Ã = 1 and ∂ B
∂ν = b · τ on ∂�,∫

�
B = 0.

(4.23)

Here, the function B0 ∈ W 1,2(�) is the solution to
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⎧⎪⎨⎪⎩
�B0 = div (∇ξ P−1) in �,

∂ B0
∂ν = b · τ on ∂�,∫

�
B0 = 0.

(4.24)

Clearly, a fixed point of (4.23) is a solution to (4.21).
By (4.20), Eq. (4.24) has a unique solution. Multiplying both sides of the first equation of (4.24) by B0, integrating by 

parts, we find from P = 1 on ∂� and (4.20) that 
∫
�

|∇B0|2 = ∫
�

∇ξ P−1 · ∇B0, from which we can estimate the gradient of 
B0 by ∫

�

|∇B0|2 ≤
∫
�

|P−1∇ξ |2 ≤ ‖P−1‖2
L∞(�)

∫
�

|∇ξ |2. (4.25)

Applying Lemma 2.4 to Ã − 1 and recalling the first and third equations in (4.23), we find

‖ Ã − 1‖2
L∞(�) + ‖∇ Ã‖2

L2(�)
≤ C

∫
�

|∇ Â|2
∫
�

|∇ξ |2 + C

∫
�

|∇ B̂|2
∫
�

|∇ P |2. (4.26)

Note that, by the second and last equations in (4.23), B − B0 ∈ W 1,2(�) satisfies⎧⎪⎪⎨⎪⎪⎩
�(B − B0) = div

(
( Â − 1)∇ξ P−1

)
+ ∇⊥ Â · ∇ P−1 in �,

∂(B−B0)
∂ν = 0 on ∂�,∫

�
(B − B0) = 0.

(4.27)

At this point, we can use Theorem 2.4 and argue as in (4.25) to obtain the estimate

‖∇(B − B0)‖2
L2(�)

≤ C‖P−1‖2
L∞(�)‖ Â − 1‖2

L∞(�)

∫
�

|∇ξ |2 + C

∫
�

|∇ Â|2
∫
�

|∇ P−1|2. (4.28)

This, combined with (4.25), gives

‖∇B‖2
L2(�)

≤ C‖P−1‖2
L∞(�)‖ Â − 1‖2

L∞(�)

∫
�

|∇ξ |2 + C

∫
�

|∇ Â|2
∫
�

|∇ P−1|2 + C‖P−1‖2
L∞(�)

∫
�

|∇ξ |2. (4.29)

The above arguments show that for ( Â, B̂), ( Â1, B̂1) ∈ X , the pairs ( Ã, B) = f ( Â, B̂), ( Ã1, B1) = f ( Â1, B̂1) satisfy the esti-
mates

‖ Ã − Ã1‖2
L∞(�) + ‖∇( Ã − Ã1)‖2

L2(�)
≤ C

∫
�

|∇( Â − Â1)|2
∫
�

|∇ξ |2 + C

∫
�

|∇(B̂ − B̂1)|2
∫
�

|∇ P |2,

and

‖∇(B − B1)‖2
L2(�)

≤ C‖P−1‖2
L∞(�)‖( Â − Â1)‖2

L∞(�)

∫
�

|∇ξ |2 + C

∫
�

|∇( Â − Â1)|2
∫
�

|∇ P−1|2.

Since 
∫
�
(B − B1) = 0, we have by the Poincaré inequality 

∫
�

|B − B1|2 ≤ C
∫
�

|∇(B − B1)|2. Hence, if 
∫
�

|∇ξ |2 + |∇ P |2 +
|∇ P−1|2 ≤ ε is sufficiently small, then a standard fixed-point argument in the space X =

(
L∞(�) ∩ W 1,2

1 (�)
)

× W 1,2(�)

yields the existence of a solution ( Ã, B) to the system (4.21).
Furthermore, from (4.26), (4.29) together with (4.16) and (4.18), the solution ( Ã, B) to the system (4.21) satisfies

‖ Ã − 1‖2
L∞(�) + ‖∇ Ã‖2

L2(�)
≤ Cε‖∇ Ã‖2

L2(�)
+ Cε|∇B|2L2(�)

≤ Cε‖∇ Ã‖2
L2(�)

+ Cε2(1 + ‖ Ã − 1‖2
L∞(�) + ‖∇ Ã‖2

L2(�)
).

Thus, if Cε ≤ 1/4, we have

‖ Ã − 1‖2
L∞(�) + ‖∇ Ã‖2

L2(�)
≤ Cε.

By (4.29), we then have ‖∇B‖2
L2(�)

≤ Cε. The proof of Step 1 is complete.

Proof of Step 2. To show (4.22), we introduce the Hodge decomposition

∇ Ã − Ã∇⊥ξ + ∇⊥B.P = ∇E + ∇⊥D (4.30)
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where E = 0 on ∂�. Taking divergence of both sides of (4.30), and recalling the first equation of (4.21), we get �E = 0 in �. 
Hence, E ≡ 0 and (4.30) reduces to

∇ Ã − Ã∇⊥ξ + ∇⊥B.P = ∇⊥D. (4.31)

It remains to show that D is a constant. By (4.31), and recalling (4.21), we have

∇D = −∇⊥ Ã − Ã∇ξ + P∇B and �D = P ( Ã∇ξ · ∇ P−1 + ∇⊥ Ã · ∇ P−1 + ∇B · ∇ P P−1).

It follows from a simple calculation that

div (∇D P−1) = (−∇⊥ Ã − Ã∇ξ + P∇B) · ∇ P−1 + �D P−1 = ∇B · ∇(P P−1) = 0. (4.32)

With (4.32), we complete the proof of Step 2 as follows. Taking dot product with τ on both sides of (4.31), and recalling 
that P = Ã = 1 on ∂�, we find that on ∂� = ∂ B1(0):

Dν = ∇⊥D · τ = Ãτ − Ãξν + Bν P = Bν − ξν = b · τ − b · τ = 0.

Multiplying both sides of (4.32) by D and integrating by parts, we find

0 =
∫
�

div (∇D · P−1)D = −
∫
�

P−1|∇D|2 +
∫
∂�

P−1 D∇D · ν = −
∫
�

P−1|∇D|2.

Recalling (4.18), we obtain ∇D = 0 in � and hence D is a constant in �. �
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