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In this paper, we study the existence of positive blow-up solutions for a general class of 
the second-order differential equations and systems, which are positive radially symmetric 
solutions to many elliptic problems in RN . We explore fixed point arguments applied to 
suitable integral equations to get solutions.
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r é s u m é

Nous étudions dans ce texte l’existence de solutions positives, non bornées, pour une 
classe générale d’équations et systèmes différentiels du second ordre. Il s’agit de solutions 
à symétrie radiale, positives, de maints problèmes elliptiques dans RN . Pour obtenir ces 
solutions, nous passons par des arguments de point fixe pour des opérateurs intégraux 
adéquats.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this short paper, we investigate the existence of positive blow-up solutions for the following class of second-order 
differential equations

(rα |u′(r)|βu′(r))′ = λrγ f (r, u(r), |u′(r)|), r > 0, (P)

and for the system{
(rα1 |u′(r)|β1 u′(r))′ = λrγ1 f1(r, u(r), v(r), |u′(r)|, |v ′(r)|), r > 0,

(rα2 |v ′(r)|β2 v ′(r))′ = μrγ2 f2(r, u(r), v(r), |u′(r)|, |v ′(r)|), r > 0,
(S)
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where λ and μ are real parameters, α, αi , β , βi , γ and γi (i = 1, 2) are real constants. The functions f : R+ ×R+ ×R+ −→
R+ , f i :R+ ×R+ ×R+ ×R+ ×R+ −→ R+ , (i = 1, 2) are positive continuous and R+ = (0, ∞), R+ = [0, ∞).

A function u : R+ −→R+ is said to be a solution to problem (P) if

rα |u′(r)|βu′(r) ∈ C1(R+), lim
r→0

rα |u′(r)|βu′(r) = 0 if α < 0,

and u satisfies equation (P) and similarly the pair (u, v) : R+ −→ R+ is a solution to the system (S) if

rα1 |u′(r)|β1 u′(r), rα2 |v ′(r)|β2 v ′(r) ∈ C1(R+),

lim
r→0

rα1 |u′(r)|β1 u′(r) = lim
r→0

rα2 |v ′(r)|β2 v ′(r) = 0 if αi < 0, i = 1,2,

and (u, v) satisfies the system (S).
The problems (P) and (S) are models of many elliptic problems when we are looking for radially symmetric solutions. 

For instance, if α = N − k, β = k − 1 and γ = N − 1 with k = 1, 2, ..., N , then positive blow-up solutions to (P) are solutions 
to the problem⎧⎨

⎩
Sk(D2u) = λC(N,k) f (|x|, u, |∇u|) in R

N ,

u > 0 in R
N ,

u −→ ∞ as |x| −→ ∞,

(1.1)

where Sk(D2u) is the k-Hessian Operator and C(N, k) = (N − 1)!/(N − k)!(k − 1)!k, which includes as a special case the 
Monge–Ampère Operator when k = N .

The second problem studied is related to the following system,⎧⎪⎪⎨
⎪⎪⎩

div(a1(x)|∇u|β1∇u) = λb1(x) f1(|x|, u, v, |∇u|, |∇v|) in R
N ,

div(a2(x)|∇v|β2∇v) = μb2(x) f2(|x|, u, v, |∇u|, |∇v|) in R
N ,

u, v > 0 in R
N ,

u, v −→ ∞ as |x| −→ ∞,

(1.2)

where ai(x) = |x|ki , bi(x) = |x|li with ki, li ∈ R and αi = ki + N − 1, γi = li + N − 1 (i = 1, 2). Here we would like to attract 
the reader’s attention to the fact that functions ai and bi may be singular at the origin. When ki = li = 0 and β1 = p − 2, 
β2 = q − 2 with 1 < p, q < ∞, we obtain a (p, q)-Laplacian System.

Besides the problems (1.1), (1.2) and their versions for system and simple equation, respectively, we believe that our 
methods also can be applied with slight modifications of (P) and (S) to establish the existence of large solutions defined on 
the whole space RN for other classes of quasilinear problems like

�φu = λ f (|x|, u, |∇u|) in R
N ,

and systems{
�φ1 u = λ f1(|x|, u, v, |∇u|, |∇v|) in R

N ,

�φ2 v = μ f2(|x|, u, v, |∇u|, |∇v|) in R
N ,

where �φu := div(φ(|∇u|)∇u), is the φ-Laplacian operator (see, Fukagai and Narukawa [2]).
The problems (P) and (S) considered here were motivated by Covei [1], Zhang and Zhou [5] (see also Zhang [4]); these 

authors discussed the case in which the right-hand side does not depend on the gradient ∇u. Furthermore, we are able to 
treat more general classes of quasilinear equations.

Now, inspired by Kuzano and Swanson [3], we assume the following hypotheses.
First of all, we consider i ∈ {0, 1, 2}, α+

i := max(αi, 0), α−
i := max(0, −αi) and define the auxiliary function

φi(t) := βi + 1

α−
i + βi + 1

t(α−
i +βi+1)/(βi+1), t ≥ 0,

where α0 = α, β0 = β , γ0 = γ and φ0 = φ.

(h1) Suppose that βi > −1 and γi ≥ α+
i .

(h2) f (t, x, z) is a nondecreasing function with respect to x and z for a fixed values of the other variables. That is, the 
functions x �→ f (t, x, z) and z �→ f (t, x, z) are nondecreasing, for fixed (t, z) and fixed (t, x) respectively.

(h3) f i(t, x, y, z, w), i = 1, 2 is a nondecreasing function with respect to x, y, z and w for fixed values of the other variables.
(h4) There exists a constant δ > 0 such that

∞∫
0

tγ −α+
f (t, δ(φ(t) + 1), δφ′(t))dt < ∞.
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(h5) There exist constants δi > 0 such that

∞∫
0

tγi−α+
i f i(t, δ1(φ1(t) + 1), δ2(φ2(t) + 1), δ1φ

′
1(t), δ2φ

′
2(t))dt < ∞, i = 1,2.

Our aim is to find increasing solutions u of (P) and increasing solutions (u, v) of (S) respectively subject to the initial 
conditions u(0) = ξ and (u(0), v(0)) = (ξ1, ξ2), for some positive values of ξ , ξ1 and ξ2. Thus, any solution u to (P) is a 
function such that u′(r) > 0 if r > 0 and satisfies the integral equation

u(r) = ξ +
r∫

0

⎛
⎝λs−α

s∫
0

tγ f (t, u(t), u′(t))dt

⎞
⎠

1/β+1

ds, r > 0.

Similarly, any solution (u, v) of (S) is such that u and v are increasing functions of the variable r and satisfies the following 
system of integral equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(r) = ξ1 +
r∫

0

⎛
⎝λs−α1

s∫
0

tγ1 f1(t, u(t), v(t), u′(t), v ′(t))dt

⎞
⎠

1/β1+1

ds, r > 0,

v(r) = ξ2 +
r∫

0

⎛
⎝μs−α2

s∫
0

tγ2 f2(t, u(t), v(t), u′(t), v ′(t))dt

⎞
⎠

1/β2+1

ds, r > 0.

(1.3)

Our main results are as follows.

Theorem 1.1. Assume (h1) with i = 0, (h2) and (h4). Then there is 
 > 0 such that for each λ ∈ (0, 
] and for each ξ ∈ (0, δ], 
problem (P) admits increasing solution u satisfying

ξ ≤ u(r) ≤ ξ(φ(r) + 1), r ≥ 0,

u(r) −→ ∞ as r −→ ∞,

and u is strictly convex if α ≤ 0.

Theorem 1.2. Assume (h1) with i = 1, 2, (h3) and (h5). Then there is 
 > 0 such that for each λ, μ ∈ (0, 
] and for each ξ1, ξ2 ∈
(0, δ], problem (S) admits increasing solution (u, v) satisfying

ξ1 ≤ u(r) ≤ ξ1(φ1(r) + 1), ξ2 ≤ v(r) ≤ ξ2(φ2(r) + 1), r ≥ 0,

u(r) −→ ∞, v(r) −→ ∞ as r −→ ∞,

and (u, v) is strictly convex if α1, α2 ≤ 0.

2. Proof of Theorem 1.1

For a fixed choice of ξ in the interval (0, δ] and λ a small positive parameter, the solutions to (P) are fixed points of the 
compact operator

(F u)(r) = ξ +
r∫

0

⎛
⎝λs−α

s∫
0

tγ f (t, u(t), u′(t))dt

⎞
⎠

1/β+1

ds

on the closed convex set

C =
{

u ∈ C1(R+); u(0) = ξ, 0 ≤ u′(r) ≤ ξφ′(r), r ≥ 0
}

.

In order to prove that F : C −→ C1(R+) has a fixed point, we need consider a countable family of semi-norms

pn(u) := max
r∈In

{|u(r)|, |u′(r)|} , In := [0,n],n = 1,2,3, . . .

and the invariant complete metric
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d(u, u0) =
∞∑

n=1

2−n pn(u − u0)

1 + pn(u − u0)
; u, u0 ∈ C1(R+), (2.1)

under which the space C1(R+) becomes a Fréchet space. For simplicity, we denote this topology by C1, that is C1 :=(
C1(R+), d

)
.

Preliminary results

Now we present some auxiliary results that will be used. The first lemma is a well-known inequality, which is obtained 
from Mean Value Theorem, whose proof we omit.

Lemma 2.1. Let σ > −1. There exists a constant Cσ > 0 such that

||x|σ x − |y|σ y| ≤ Cσ (|x|σ + |y|σ )|x − y|, (2.2)

for all x, y ∈R.

Lemma 2.2. Suppose (h1) with i = 0, (h2) and (h4) and let ξ ∈ (0, δ]. There exists 
 > 0 such that if λ ∈ (0, 
] then FC ⊂ C .

Proof. Assume that ξ is fixed such that 0 < ξ ≤ δ. For any u ∈ C we have (F u)(0) = ξ . From (h2) and (h4), there is M > 0
such that

λ

∞∫
0

tγ −α+
f (t, ξ(φ(t) + 1), ξφ′(t))dt ≤ λM, λ > 0.

Hence, there exist 
 > 0 such that

λ

∞∫
0

tγ −α+
f (t, ξ(φ(t) + 1), ξφ′(t))dt ≤ ξβ+1,

for all λ ∈ (0, 
]. Since u ∈ C , then u(r) ≤ ξ(φ(r) + 1), r > 0. It follows from (h4) that

0 ≤ (F u)′(r) =
⎛
⎝λr−α

r∫
0

tγ f (t, u(t), u′(t))dt

⎞
⎠

1/β+1

≤ r
α−
β+1

⎛
⎝λ

∞∫
0

tγ −α+
f (t, ξ(φ(t) + 1), ξφ′(t))dt

⎞
⎠

1/β+1

≤ ξφ′(r), r ≥ 0.

From the above analysis, FC ⊂ C . �
Lemma 2.3. F : C −→ C1(R+) is continuous in the C1-topology.

Proof. Let {u j} ⊂ C and u ∈ C such that d(u j, u) −→ 0. It follows that f (r, u j, u′
j) −→ f (r, u, u′) uniformly on In . Then, 

given any ε > 0, there is a positive integer J0 = J0(ε, n) such that

|rγ −α+{ f (r, u j, u′
j) − f (r, u, u′)}| < ε

n1+α− , j ≥ J0, r ∈ In.

Therefore

|r−α

r∫
0

tγ f (r, u j, u′
j)dt − r−α

r∫
0

tγ f (r, u, u′)dt| ≤ rα−
r∫

0

|tγ −α+{ f (r, u j, u′
j) − f (r, u, u′)}|dt < ε

for j ≥ J0 and r ∈ In . Then we get the convergences (F u j)
′ −→ (F u)′ , (F u j) −→ (F u) uniformly on In . Thus pn(F u j −

F u) −→ 0, which implies that d(F u j, Fu) −→ 0. So F is continuous. �
Lemma 2.4. FC ⊂ C is relatively compact in the C1-topology.
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Proof. Set [FC] = {F u/u ∈ C}, [FC]′ = {(F u)′/u ∈ C} and note that they are uniformly bounded. Now, we show [FC] and 
[FC]′ is locally equicontinuous. Let r1, r2 ∈ [a, b] with 0 ≤ r1 < r2. Thus

|(F u)(r2) − (F u)(r1)| ≤ ξ(φ(r2) − φ(r1))

from which [FC] is equicontinuous in any [a, b] ⊂ R+ . On the other hand,

|(F u)′(r2) − (F u)′(r1)| = |(r−α
2

r2∫
0

tγ f (t, u, u′)dt)
1

β+1 − (r−α
1

r1∫
0

tγ f (t, u, u′)dt)
1

β+1 |.

From inequality (2.2) with σ + 1 = 1
β+1 ,

|(F u)′(r2) − (F u)′(r1)| ≤ Cσ |(r−α
2

r2∫
0

tγ f (t, u, u′)dt)σ + (r−α
1

r1∫
0

tγ f (t, u, u′)dt)σ |

|(r−α
2

r2∫
0

tγ f (t, u, u′)dt) − (r−α
1

r1∫
0

tγ f (t, u, u′)dt)|.

Next, we will divide our study into two cases:

Case 1: σ ≥ 0 (that is −1 < β ≤ 0).

Since u ∈ C and ξ ∈ (0, δ] it follows that

|(F u)′(r2) − (F u)′(r1)| ≤ Cσ |(r−α
2

r2∫
0

tγ f (t, u, u′)dt) − (r−α
1

r1∫
0

tγ f (t, u, u′)dt)|

for all r1, r2 ∈ [a, b]. Consider the function g(r) := r−α
∫ r

0 tγ f (t, u, u′) dt and notice that

|g′(r)| ≤ (1 + |α|)bγ −α f (r, δ(φ(r) + 1), δφ′(r))), r ∈ [a,b].
Thus, supr∈[a,b] |g′(r)| < ∞ and by the Mean Value Theorem,

|(F u)′(r2) − (F u)′(r1)| ≤ Cσ |r2 − r1| with r1, r2 ∈ [a,b].
Implying the equicontinuity of [FC]′ on any [a, b] ⊂R+ .

Case 2: −1 < σ < 0 (that is β > 0).

Now, if [a, b] ⊂ R+ with 0 < a0 ≤ a, then we proceed as in the Case 1. On the other hand, if a = 0, since the function 
h : [0, 1] −→R; h(g) = gσ+1, 0 < σ + 1 < 1 is Hölder continuous and limr→0 g(r) = 0, we have

|(F u)′(r2) − (F u)′(r1)| = |(g(r2))
σ+1 − (g(r1))

σ+1| ≤ C |g(r2) − g(r1)|σ+1

and once again, by the Mean Value Theorem we obtain the equicontinuity of [FC]′ on any [0, b].
Therefore, from Ascoli’s Theorem, it follows that [FC] and [FC]′ are relatively compact in any compact interval of R+ . 

Consequently, by a diagonal argument, we conclude that FC is relatively compact in the C1-topology. �
Proof of Theorem 1.1 (closing)

By Lemma 2.2, we have FC ⊂ C = C , thus C̃ := conv(FC) ⊂ C is compact and F C̃ ⊂ C̃ . Therefore, the Schauder–Tychonov 
fixed point theorem implies that F |C̃ : C̃ −→ C̃ has a fixed point. Then, there is u ∈ C such that

u(r) = ξ +
r∫

0

⎛
⎝λs−α

s∫
0

tγ f (t, u(t), u′(t))dt

⎞
⎠

1/β+1

ds.

It follows that u′(r) ≥ 0, r ≥ 0, u′(0) = 0 and

ξ ≤ u(r) ≤ ξ(φ(r) + 1), r ≥ 0.

Furthermore, u satisfies

((u′(r))β+1)′ + α
(u′(r))β+1 = λrγ −α f (r, u, u′), r ≥ 0.
r
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If α ≤ 0, we have u′′(r) > 0 for all r > 0 since

(β + 1)(u′(r))β+1u′′(r) ≥ λrγ −α f (r, u, u′) > 0, r > 0,

from where it follows that u is strictly convex. On the other hand, given α > 0 we obtain r0 > 0 such that

α <
λ rγ −α+1

0

ξβ+1
inf

r∈[r0,∞)
f (r, ξ,0),

and again u′′(r) > 0 for all r > r0. Hence,

u(r) ≥ u′(r0)(r − r0) −→ ∞ if r −→ ∞. �
3. Proof of Theorem 1.2

To find solutions to the system (S), consider the mapping

I(u, v) = (
F1(u, v), F2(u, v)

)
defined by the system of integral equations

F1(u, v)(r) = ξ1 +
r∫

0

⎛
⎝λs−α1

s∫
0

tγ1 f1(t, u(t), v(t), u′(t), v ′(t))dt

⎞
⎠

1/β1+1

ds,

F2(u, v)(r) = ξ2 +
r∫

0

⎛
⎝μs−α2

s∫
0

tγ2 f2(t, u(t), v(t), u′(t), v ′(t))dt

⎞
⎠

1/β2+1

ds,

on the closed convex set C := C1 × C2, where

Ci =
{

u ∈ C1(R+); u(0) = ξi, 0 ≤ u′(r) ≤ φ′
i(r), r ≥ 0

}
, i = 1,2.

Similar to what was done previously, I : C −→ C1 × C1 is well defined, is continuous, and IC ⊂ C is relatively compact in the 
C1-topology by considering the metric d′((u, u0), (v, v0)) = d(u, u0) + d(v, v0) where d is given by (2.1). We can then apply 
the Schauder–Tychonov fixed point theorem to conclude that there exists an element (u, v) ∈ C such that I(u, v) = (u, v). 
Thus (u, v) satisfies (1.3), and hence also (u, v) is a solution to the original system (S). To finish the proof, we proceed as 
in the proof of the Theorem 1.1. �
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