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RESUME

Dans cette note, nous décrivons une relation entre les nombres de Lelong et les exposants
de singularités complexes. Comme application, nous obtenons une nouvelle preuve du
théoréme de semi-continuité de Siu pour les nombres de Lelong.
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1. Introduction

Let ¢ be a plurisubharmonic function near the origin o € C". The Lelong number is classically defined as
Definition 1.1. v(¢,0) :=sup{c >0:¢ <clog|z| + O(1)}.

In [22], Siu established the semicontinuity theorem for Lelong numbers, namely, that the upper level sets of Lelong
numbers of any closed positive current are analytic sets. A few years later, Kiselman [17] (see also [18]) generalized Siu’s
semicontinuity theorem to directional Lelong numbers. In [3], Demailly introduced generalized Lelong numbers and ex-
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tended the above result of Kiselman in this context. Later, Demailly (see [6]) gave a simple and completely new proof of
Siu's theorem by using the Ohsawa-Takegoshi L? extension theorem.

In this note, relying on our previous works [12-16], we present a new proof of Siu’s theorem by establishing a relation
between Lelong numbers and complex singularity exponents.

Let us first recall the definition of complex singularity exponents (also called log canonical thresholds by algebraic ge-
ometers, see [21,19] et al.); for this, it is convenient to use the concept of multiplier ideal sheaf

Z(P)zy := 1 f € Ocn 7, | 3V open > zp, /|f(z)|2e’2¢(z)dx(z) <400},
\4

introduced by Nadel [20] (see [4,6,23,25] et al.).
Definition 1.2. The complex singularity exponent of ¢ at zg is defined to be
Czo (@) :=sup{c = 0: Z(c@)zy = Ocn 7}
Our main result can be stated as follows:

Theorem 1.3. Let ¢ be a plurisubharmonic function on an open set D C C". Then for any k € N, k > 1, there exists a plurisubharmonic
function @y, defined on a neighborhood of D x {0} C C" x CK with coordinates (z, w), such that

(1) gr(z,0) =¢(2),
(2) v(gk, (z,0)) =v(p, 2),
(3) ﬁ < Cz,0) (@) < v,(lgj.kz)

for any z € D, where o is the origin in CX. One can take for instance

(4) gr(z,w)= sup @(2).
¢e€B(z,|w))

The reader will observe that the second inequality in (3) can be directly deduced by Skoda’s well-known estimate (see
[24]) cz(p) < ﬁ applied to ¢ at (z,0), and combined with (2).
Remark 1.4. It is clear that property (3) in Theorem 1.3 is equivalent to

k
n+k

v, 2) < czo M+ k@) <v (g, 2),

which implies

1
[v«p, z)> C] 2 [C(z,o)((n +kep) < E] 2{v(p,2) = c}.

n+k

Since limy_, 400 75 = 1, we obtain

1
{zlv(g.2) =} =) {ZIC<Z,0)((n +k)er) < E} :
k

It is however well known that the sublevel sets {z|c,(¥) < a} of complex singularity exponents of any plurisubharmonic
function ¢ are analytic. This follows, e.g., from Berndtsson’s solution [1] of the openness conjecture (the conjecture was
posed by Demailly and Kollar [7]; for a proof of the two-dimensional case, see [10,9,8]). In fact, this had been known since
a long time as a consequence of the Hérmander-Bombieri theorem [11,2]. We conclude that the set {z|c,0)((n +k)@k) < %}
is analytic for any k € N and ¢ > 0, whence Siu’s semicontinuity theorem for Lelong numbers [22]:

Corollary 1.5. (See [22].) {z|v(¢, z) > ¢ > 0} is an analytic set.

We refer to [6] and [5] for alternative proofs by Demailly. We would like to thank the referee for pointing out the
Hoérmander-Bombieri theorem.
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2. Preparation
2.1. Restriction formula for complex singularity exponents and Lelong numbers

Let ¢ be a plurisubharmonic function on a neighborhood of the origin o € C". In [7], the following restriction formula
(“important monotonicity result”) about complex singularity exponents is obtained by using the Ohsawa-Takegoshi L2 ex-
tension theorem.

Proposition 2.1. (See [7].) For any regular complex submanifold (H, 0) C (C", 0), the inequality
Co(@lH) < Co(@) (2.1)
holds whenever ¢|y % —oo.

We recall the following (much easier to prove) restriction property of Lelong numbers.

Lemma 2.2. (See [6].) For any regular complex submanifold (H, 0) C (C", 0), the inequality

V(@lH,0) = v(p,0) (2.2)

holds whenever ¢|y £ —oo.

2.2. Lelong number and complex singularity exponent for U (n) invariant plurisubharmonic functions on C"

We recall the following characterization of U (n) invariant plurisubharmonic function (see, e.g., Lemma II1.7.10 in [6]).

Lemma 2.3. Let ¢ be a plurisubharmonic function on a ball B(0,r) C C" which is U (n) invariant. Then ¢(z) = yx (log|z|), where
X : R — R is a convex increasing function.

The following remark is a direct consequence of Lemma 2.3.

Remark 2.4. Let ¢ be a plurisubharmonic function on a ball B(0,r) C B" that is U(n) invariant. Then c,(¢) = %.

Proof. By Definition 1.1, it is clear that

. t
v(p,0) = lim m,
t—>—o00
i.e. for any € > 0, there exists § > 0 such that for any |z| < 4,

(v(g,0) +e)loglz] < ¢(2) < (v(p,0) — &) log|z],
and the present remark is deduced by looking at the integrability of e=“?. O

2.3. A holomorphic change of variables for Lelong numbers

Take a surjective linear map £: Ck — C" (k > n), and define a holomorphic map p; from C" x C¥ such that
Pz, w) =z 4+ £(w).

Let ¢ be a plurisubharmonic function on D C C". Then the pull-back function p;¢ = ¢ o py is well defined on the open set
p; (D) C C" x Ck.

Lemma 2.5. For any zo € D, the pull-back function p; ¢ satisfies by construction the following properties:

(1) pie(20,0) = ¢(20);
(2) v(pre, (20,0)) =Vv(@, 20) = V(PEPlz=z, (20, 0)),

where the notation v(p; ¢|z=z,, (20, 0)) indicates that the Lelong number is computed along the submanifold {z = zo} = {zo} x Ck,
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Proof. (1) is obvious by definition of py. In order to prove (2), it suffices to consider the case zo = (0,---,0) € D. It is clear
that p;log|z| =log|z+ ¢(w)| < log(|z| + |w]) + O(1). Therefore, for any ¢ > 0 satisfying ¢(z) < clog|z| + O(1) when z— 0,
we have

prp(z, w) <clog(lz| + [w|) + 0 (1),

which implies v(p;@, (z0,0)) > v(@, o). Conversely, if H C Ck is taken to be a linear subspace on which ¢: H — C" is
bijective, Lemma 2.2 yields the sequence of inequalities

V(Pr@, (20,0)) < V(PP l(z)xck> (20, 0)) < V(Pg@lizo)xH, (20, 0)) = V(®, 20).

The last equality comes from the invariance of Lelong numbers by linear changes of variable, which is obvious from Defini-
tion 1.1. This implies (2), and the lemma is proved. O

2.4. An invariance property of Lelong numbers

Let ¢ be a plurisubharmonic function on a product domain 2 c C" x Ck containing the origin, and let (z, w) denote the
coordinates. One can define

@(z,w):= sup @(z,gw)
geU (k)

on a U (k) invariant neighborhood of {w = o0} in C¥. It is a plurisubharmonic function. By Definition 1.1, we immediately get

Lemma 2.6. The equalities

V(@, (20,0)) =v(@, (20,0)) and V(P|z=z, (20,0)) = V(@|z=z, (20, 0))

hold for any (zg, 0) € (2 N {w =0}).
3. Proof of Theorem 1.3

Let ¢ be a plurisubharmonic function on an open set D CcC C". With the same notation as above, let us consider the
plurisubharmonic function

@k(z, w) == sup pip(z,gw),
geU(k)

which is defined on a neighborhood of D x {0} in C" x C¥. By Lemmas 2.6 and 2.5 (2), second equality, we have
V(@klz=z (20, 0)) = V(P Plz=2y» (20, 0)) = V(@, Z0). (3.1)
However, by Remark 2.4, since w — ¢ (zo, w) is U(k)-invariant, it follows that

k

V(@klz=zy5 (20,0)) = —————. (3.2)
=% C(Zo,O) ((pk|l=lo)

From Proposition 2.1 and equalities (3.2), (3.1) respectively, one gets

Clz0.0) (B) = Clz.0) (Plz—z0) X X

s k) = s klz=z9) = = .
(0.0 T = M0 =20 ) (k=20 (20.0)) V(@ Z0)

This completes the proof of Theorem 1.3.
Remark 3.1. By taking ¢ : Ck — C™ to be the projection onto the first n coordinates, one simply gets

Pz w)= sup @), weC, (33)

{eB(z.|w))

In fact with such a choice of ¢, Theorem 1.3 even holds for any k > 1, as one can easily see.
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