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RESUME

Nous montrons ici une régularité de Holder «faible» jusqu'au bord d'une solution du
probléme de Dirichlet pour I'équation de Monge-Ampére complexe, de donnée dans
I'espace LP, sur un domaine satisfaisant une f-propriété. Cette f-propriété est une
condition de théorie du potentiel qui est satisfaite par tous les domaines pseudo-convexes
de type fini et de nombreux exemples de type infini.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a C2, bounded, pseudoconvex domain € cc C", the Dirichlet problem for the Monge-Ampére equation consists of

ue PSH(Q) NLE.(Q),

(ddu)" = ¢ dV inQ, (1.1)
u=g on bQ2.
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A great deal of work has been done for the case where  is strongly pseudoconvex. Within this domain, we can divide the
literature into three kinds of data .

— The Hélder data: Bedford-Taylor prove in [2] that u € CZ (Q) if ¢ € C¥(b2), w% eC3(Q) for0<a <2.
- The smooth data: Caffarelli, Kohn and Nirenberg prove in [4] that u € C*(), for ¢ € C®°(b2) and ¥ € C®(), in case
¥ >0in Q and b2 is smooth.
- The LP data: Guedj, Kolodziej and Zeriahi prove in [6] that if v € LP(2) with p > 1 and ¢ € C1'1(bQ2) then u € C7 (Q)
for any y < yp := soq where ¢ + 1 =1.
When  is no longer strongly pseudoconvex but has a certain “finite type”, there are some known results for this problem
due to Blocki [3], Coman [5], and Li [11]. Recently, Ha and the second author gave a general related result to a Holder
data under the hypothesis that Q satisfies an f-property (see Definition 2.1 below). The f-property is a consequence of the
geometric “type” of the boundary. All pseudoconvex domains of finite type satisfy the f-property as well as many classes of
domains of infinite type (see [9,7,8] for discussion on the f-property). Using the f-property, a “weak” Holder regularity for
the solution to the Dirichlet problem of the complex Monge-Ampére equation is obtained in [9]. Coming back to the case of
Q of finite type, in a recent paper with Zampieri [1], we prove the Holder regularity for v € LP, with p > 1. The purpose of
the present paper is to generalize the result in [1] to a pseudoconvex domain satisfying an f-property. For this purpose, we
recall the definition of a weak Hélder space in [9,7]. Let f be an increasing function such that [Lirlloof(t) =400, f(t) <t.

For a subset A of C", define the f-Holder space on A by
A A ={ullullpeay +  sup  flz—w|™) - u@) — u(w)| < oo}
Z,WeA,z#£wW
and set
lullorcay = Ul +  sup  fllz—wl™h) - [u@) —u(w)|.
Z,WeA,z#W

Note that the notion of the f-Holder space includes the standard Holder space A, by taking f(t) =t (so that f(Jh|~1) =
|h|~%) with 0 < « < 1. Here is our result

o0
d
Theorem 1.1. Let 2 C C" be a bounded, pseudoconvex domain admitting the f-property. Suppose that / TEIG) < oo and denote by
1

00 -1

d « , ) .
g = / af?a) fort>1.1f0<a <2 ¢e A" (bQ), and ¥ > 0 on Q with i € LP with p > 1, then the Dirichlet problem
t

for the complex Monge-Ampeére equation (1.1) has a unique plurisubharmonic solution u € Agﬂ(ﬁ). Here 8 = min(«, y), for any
y<yp:nq%where%+%:l.

The proof follows immediately from Theorem 2.2 and 2.5 below. Throughout the paper we use < and 2 to denote an
estimate up to a positive constant, and ~ when both of them hold simultaneously. Finally, the indices p, «, 8, ¥ and y,
only take ranges as in Theorem 1.1.

2. Holder regularity of the solution
We start this section by defining the f-property as in [7,8].

Definition 2.1. For a smooth, monotonic, increasing function f :[1, +o0) — [1, +00) with f(t)t~1/2 decreasing, we say that
Q has the f-property if there exist a neighborhood U of bQ2 and a family of functions {gs} such that

(i) the functions @; are plurisubharmonic, C? on U, and satisfy —1 < ¢s <0,
(i) 198¢s > f(8~1)%Id and |Dg;s| <87 for any ze UN{ze Q: —8 <r(z) <0}, where r is a C2-defining function of .

In [7], using the f-property, the second author constructed a family of plurisubharmonic peak functions with good esti-
mates. This family of plurisubharmonic peak functions yields the existence of a defining function p which is uniformly
strictly plurisubharmonic and weakly Holder (see [9]).

Theorem 2.2 (Khanh [7] and Ha-Khanh [9]). Assume that €2 is a bounded, pseudoconvex domain admitting the f-property as in
Theorem 1.1. Then there exists a uniformly strictly-plurisubharmonic defining function of 2 that belongs to the g2-Hoélder space of Q,
which means that
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peAf (@), Q={p<0} and iddp>Id. (21)

The existence and uniqueness of the solution u € L°°(2) to the equation (1.1) need a weaker condition, in particular, one
only need p € C%(), as shown by [10].

Theorem 2.3 (Kolodziej [10]). Let 2 be a bounded domain in C". Assume that there exists a function p such that
peCd%Q), Q={p<0} and i3dp >1Id.
Then, for any ¢ € CO(bS2), ¥ € LP (), there is a unique plurisubharmonic solution u(2, ¢, ¥) € CO(Q).

To improve the smoothness of u, we increase the smoothness of p and .

Theorem 2.4 (Ha-Khanh [9]). Let p satisfy (2.1). If ¢ € A" (bS) and 1//% € A (D), then the Dirichlet problem for the complex
Monge-Ampére equation (1.1) has a unique plurisubharmonic solution u(2, ¢, ¥) € A (Q).

Now we focus on lowering the smoothness of ¢ and prove the following theorem.

Theorem 2.5. Let p satisfy (2.1).If ¢ € A" (bS2) and ¥ € LP (), then the Dirichlet problem for the complex Monge-Ampére equation
(1.1) has a unique plurisubharmonic solution u(2, ¢, ¥) € Ag Q).

In order to prove this theorem, we need to construct a subsolution with LP data. Here, v is a subsolution to (1.1) in the
sense that v is plurisubharmonic, v|pqg = ¢ and (dd°v)" > ¢ dV in Q.

Proposition 2.6. Let p satisfy (2.1). Then there is a subsolution v € A% (Q) to (1.1) for ¢ € C¥(bQ) and ¥ € LP(R).

v(z) ifzeQ,

0 ifze B\ Q.
¥ € LP(B) and zero-valued boundary condition; it follows uq; = u(B, 0, /) € AY (B). Second, we apply Theorem 2.4 on
twice: first for us := u(2, —u1|pn, 0) € A&, since u1|po € A, and second for us := u(2,¢,0) € A8 by the hypothesis
Qe AT, Finally, taking the summation v = uq + uy + us, we have the conclusion. 0O

Proof. For a large ball B containing Q, we set ¥ (z) := { First, we apply Theorem 1 in [6] on B with

Proof of Theorem 2.5. Keeping the notation of Theorem 2.3, let u($2, ¢, ) € C%($2) be the solution to (1.1). What follows is

dedicated to showing that this €O plurisubharmonic solution u (2, @, ¥) is in fact in Agﬁ(Q). By Theorem 2.4 we have that
w:=u(, ¢,0) is in A8% (). Let v be as in Proposition 2.6 then the comparison principle yields at once

v=u(2, e, ¢) < w. (2.2)
By (2.2) and the gf-Holder regularity of v and w, we get

u@ —u@) Slglz—¢1™H17 zeQ, ¢ ebQ,
and therefore for § suitably small

u@ —u@)| <g@d H1™?, z.7Ze\Qsand|z—7| <8 (2.3)

where Qs :={zeC":r(2) < -8} and r is the C2 defining function for € with |[Vr| =1 on bS2. We have to prove that (2.3)
also holds for z, z' € Q5. For z € Q5, we use the notation

- 1
us(2):= sup u(z+¢), us(@)=———+5-7 / u(¢)ds(),
1< om-1(3) 5
bB(z,3)
and
s (2) ! / u(g)dv()
5(2) 1= ——— ,
2T om(5)™
B(z$)
where 02,1_1(%)2"71 = Vol(bB(z, %)) and 02,1(%)2'1 =Vol(B(z, $)). It is obvious that
s <ils <us in . (2.4)

8

2

Furthermore, we have an L! estimate of the difference between u and ii; and of the stability estimate in the following
2

theorems (2.7 and 2.8).
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Theorem 2.7 (Baracco-Khanh-Pinton-Zampieri [1]). For any 0 < € < 1, we have

~ 1—
lus —ullpi gy S8 (2.5)

5
2
Theorem 2.8 (Guedj-Kolodziej-Zeriahi [6]). Fix 0 < f € LP(2), p > 1. Let U, W be two bounded plurisubharmonic functions in
such that (dd°U)" = fdV inQandlet U > W on dQ. Fixs>1and0<n < # % + % = 1. Then there exists a uniform constant
C=Cm, I fllir(e)) > O such that

sUp(W —U) < CI(W = D+l q).
where (W — U)4 :=max(W — U, 0).

By (2.3), we have

=

g Sup <u+ c[g(™H1#, onbQ; for suitable constant c.

Thus, we can apply Theorem 2.8 for €5 with U :=u +c[g(8" )]~ ¢, W := ﬁ% and s:= 1; thus we get

~ —1\1-8 M —1y1-8 n
sup (i — wclg@ ™) S (i - @clgGTI) M,

Theorem 2.8

Shiy —ulfyg, 5 807 (2.6)

for any n < %Vp = mfﬁ where % + % =1.Taking y < yp, B =min(x, y), € = ;ﬁ;; >0and n= %(yp +y) < %J/p so that
(1—¢)n= 1%, it follows

sup (i, —u) £807 + (g7 )1 8% +1g6~F S g, o)

Qs

where the last inequality of (2.7) follows by g(8~1) < 53 (by the conditions on f in the f-property).
Similarly to [6, Lemma 4.2] by using the fact that g(c§~1)) ~ g(§~!) for any constant c > 0, one can state the equivalence
between

sup(us —u) S [g@ D177 and  sup(its —u) S1g6~ 177
Qs Qs
Using this equivalence together with the inequalities in (2.4), it follows that (2.7) is equivalent to
sup(uy —u) S[g6~H17". (2.8)
Qs 2

From (2.3) and (2.8), it is easy to prove that

u@ —u@) <lg(z—21"H1™? foranyz,ZeQ. O
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