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In this paper, we give a new algebraic construction of knot contact homology in the sense 
of Ng [35]. For a link L in R3, we define a differential graded (DG) k-category ˜AL with 
finitely many objects, whose quasi-equivalence class is a topological invariant of L. In the 
case when L is a knot, the endomorphism algebra of a distinguished object of ˜AL coincides 
with the fully noncommutative knot DGA as defined by Ekholm, Etnyre, Ng, and Sullivan 
in [13]. The input of our construction is a natural action of the braid group Bn on the 
category of perverse sheaves on a two-dimensional disk with singularities at n marked 
points, studied by Gelfand, MacPherson, and Vilonen in [19]. As an application, we show 
that the category of finite-dimensional representations of the link k-category ÃL = H0( ˜AL)

defined as the 0-th homology of ˜AL is equivalent to the category of perverse sheaves on 
R

3 that are singular along the link L. We also obtain several generalizations of the category 
˜AL by extending the Gelfand–MacPherson–Vilonen braid group action. Detailed proofs of 

results announced in this paper will appear in [4].
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous donnons une nouvelle construction algébrique de l’homologie de 
contact des nœuds, au sens de Ng [37]. Pour un entrelacs L dans R3, nous définissons 
une k-catégorie différentielle graduée ˜AL ayant un nombre fini d’objets, dont la classe de 
quasi-équivalence est un invariant topologique de L. Lorsque L est un nœud, l’algèbre des 
endomorphismes d’un objet distingué de ÃL coïncide avec l’algèbre différentielle graduée, 
pleinement non commutative du nœud, définie par Ekholm, Etnyre, Ng et Sullivan dans 
[12]. Notre construction se base sur une action naturelle du groupe de tresses Bn sur la 
catégorie des faisceaux pervers sur un disque de dimension deux avec singularités en n
points marqués, étudiée par Gelfand, McPherson et Vilonen dans [19]. Comme application, 
nous montrons que la catégorie des représentations de dimension finie de la k-catégorie 
d’entrelacs ÃL = H0( ˜AL), définie comme l’homologie de degré 0 de ˜AL , est équivalente à 
la catégorie des faisceaux pervers sur R3 qui sont singuliers le long de l’entrelacs L. Nous 
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obtenons également plusieurs généralisations de la catégorie ˜AL en étendant l’action du 
groupe de tresses de Gelfand–MacPherson–Vilonen.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In a series of papers [35–39], L. Ng introduced and studied a new algebraic invariant of a link L in R3 represented 
by a semi-free differential graded (DG) algebra AL . The structure of this DG algebra (termed a combinatorial knot DGA) 
is determined by an element of a braid group Bn representing the link L. The homology of AL is called the knot con-
tact homology HC∗(L), as it coincides with the Legendrian contact homology1 of the unit conormal bundle �L ⊆ ST ∗

R
3

of L. This coincidence was conjectured in [35,36] and proved later in [13,14], where it was shown, in fact, that the entire 
combinatorial knot DGA is isomorphic to a geometrically defined DG algebra computing the Legendrian contact homology 
of �L .

Our original motivation was to understand Ng’s combinatorial proof of the invariance of AL (up to quasi-isomorphism) 
under the Markov moves. We should remark that, although the differential of AL is defined in [35] by an explicit formula, its 
combinatorial structure is fairly complicated and its algebraic origin seems mysterious. Even the fact that the 0-th homology 
of AL is a link invariant is far from being obvious from the definition of [35] (cf. [35, Section 4.3]). As a result, we have come 
up with a different, more conceptual construction that makes the Markov invariance of AL quite transparent2 and, more 
importantly, places knot contact homology in one row with other classical invariants, such as knot groups and Alexander 
modules.

To clarify the ideas, we begin by recalling a classical theorem of E. Artin and J. Birman that gives a natural presentation 
of the link group π1(R

3 \ L) in terms of a braid representing L. Let D be the unit disk in R2, and let {p1, . . . , pn} ⊂ D
be a set of distinct points in the interior of D . It is well known that the braid group on n-strands, Bn , can be identified 
with the mapping class group of (D \{p1, . . . , pn}, ∂ D), and as such it acts naturally on the fundamental group π1(D \
{p1, . . . , pn}, p0), where p0 ∈ D \{p1, . . . , pn} is a basepoint (which we choose near the boundary of D). The fundamental 
group π1(D \{p1, . . . , pn}, p0) is a free group Fn of rank n based on generators x1, . . . , xn that correspond to small loops in 
D \{p1, . . . , pn} around the points pi . Explicitly, in terms of these generators, the action of Bn on π1(D \{p1, . . . , pn}, p0) ∼= Fn

is given by

σi :
⎧⎨⎩ xi �→ xi xi+1 x−1

i
xi+1 �→ xi
x j �→ x j ( j 	= i, i + 1)

(1.1)

where σi (i = 1, 2, . . . , n − 1) are the standard generators of Bn . This action is usually called the Artin representation, as it 
provides a faithful realization of Bn as a subgroup of Aut(Fn). Now, the Artin–Birman Theorem (see [6, Theorem 2.2]) asserts 
that the fundamental group of the complement of the link L = β̂ ⊂R

3 corresponding to a braid β ∈ Bn has the presentation

π1(R
3\L) ∼= 〈x1, x2, . . . , xn | β(x1) = x1, β(x2) = x2, . . . , β(xn) = xn〉 , (1.2)

where β(xi) denotes the action of β on xi via the Artin representation.
We abstract this situation in the following way. Let C be a category with finite colimits. We assume that we are given a 

family of braid group actions �n : Bn → Aut A(n) , n ≥ 1, on objects of C having the properties:

(1) for each n ≥ 1, A(n) is the n-fold coproduct of one and the same object A of C;
(2) the actions �n are local and homogeneous in the sense that each σi ∈ Bn acts only on the (i, i + 1)-copy of A(2) in A(n)

while keeping the rest fixed, and any two standard generators of Bn act in the same way on the corresponding copies 
of A(2) for all n ≥ 1.

Such braid group actions are determined (generated) by a single morphism σ : A 
 A → A 
 A in the category C that we call 
a co-Cartesian Yang–Baxter operator (cf. Definition 2.1). For example, the Artin representations are generated by a co-Cartesian 
Yang–Baxter operator in the category of groups given by σ : F1 
 F1 → F1 
 F1, x1 �→ x1x2x−1

1 , x2 �→ x1.

1 In the sense of [16] (see also [11,12]).
2 In fact, the invariance of our construction under type I Markov moves follows directly from its definition.



380 Y. Berest et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 378–399
Now, for an arbitrary co-Cartesian Yang–Baxter operator (A, σ), we define a universal construction L(A, σ) that as-
sociates with each braid β ∈ Bn the coequalizer of the endomorphisms id and β of the object A(n) , or equivalently, the 
following pushout in C:

L(A,σ )[β] := coeq
[

A(n)
β

id
A(n)

] = colim [ A(n) (β, id)←−−−− A(n) 
 A(n) (id, id)−−−−→ A(n) ] . (1.3)

We call (1.3) the categorical closure of the braid β on the object A with respect to the Yang–Baxter operator σ . This terminology 
can be justified by the following “picture”3 of the pushout (1.3) that manifestly exhibits it as “a braid closure on A”:

colim [ A(3) (β, id)←−−−− A(3) 
 A(3) (id, id)−−−−→ A(3) ].
In the case of Artin representations, the Artin–Birman Theorem (1.2) implies that L(F1, σ)[β] ∼= π1(R

3 \L). This means, 
in particular, that L(F1, σ)[β] is a link invariant.

In general, we show that, if a co-Cartesian Yang–Baxter operator (A, σ) satisfies some natural conditions, which we call 
the Reidemeister conditions (see Definition 2.15), then the isomorphism class of the categorical closure of any braid with 
respect to (A, σ) is stable under the Markov moves, and hence defines a link invariant (cf. Theorem 2.10 and Theorem 2.17). 
Apart from the group π1(R

3\ L), many classical link invariants arise in this way (see, for example, Theorem 2.8 that repre-
sents as a categorical braid closure the Alexander module).

Next, we consider the category Perv(D, {p1, . . . , pn}) of perverse sheaves on the disk D with only possible singularities 
at the points {p1, . . . , pn}. In [19], Gelfand, MacPherson and Vilonen showed that Perv(D, {p1, . . . , pn}) is equivalent to the 
category Q̃(n) of finite-dimensional k-linear representations of the following quiver

Q (n) =

1

a1n
an

2

a2
0

a∗
1 a∗

2

a∗
3

a∗
n

. . .
3

a3

such that the operators Ti := e0 + aia∗
i act as isomorphisms for all i = 1, 2, . . . , n. More formally, Q̃(n) can be described as 

the category Mod Ã(n) of finite-dimensional modules over the k-category

Ã(n) := k〈Q (n)〉[T −1
1 , . . . , T −1

n ] (1.4)

which is obtained by localizing the path category of Q (n) at the set of morphisms {T1, . . . , Tn}. Now, the braid group Bn
acts on the disk D with n marked points {p1, . . . , pn} as a mapping class group, and this naturally induces an action on the 
category Perv(D, {p1, . . . , pn}). It was shown in [19] that, under the equivalence Perv(D, {p1, . . . , pn}) � Q̃(n) , the action of 
Bn on the category of perverse sheaves corresponds to a strict action on the category Q̃n (cf. [19, Proposition 1.3]). This, 
in turn, induces an action of Bn on the k-category Ã(n) , which is given explicitly (on generating morphisms of Ã(n)) by the 
following formulas

σi :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai �→ Ti ai+1

ai+1 �→ ai

a j �→ a j ( j 	= i, i + 1)

a∗
i �→ a∗

i+1 T −1
i

a∗
i+1 �→ a∗

i

a∗
j �→ a∗

j ( j 	= i, i + 1).

(1.5)

We call (1.5) the Gelfand–MacPherson–Vilonen (GMV) braid action.

3 In fact, this “picture” of a categorical braid closure can be formalized by using the diagrammatic tensor calculus developed by A. Joyal, R. Street and 
others (see [26,27,41]). We briefly discuss it at the end of Section 2.
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The GMV braid actions are generated by a single co-Cartesian Yang–Baxter operator in the category of (small) pointed
k-categories Cat∗k . Specifically, for each n ≥ 1, the k-category Ã(n) is the coproduct (fusion product) in Cat∗k of n copies of the 

k-category Ã = k〈Q 〉[T −1], where k〈Q 〉 is the path category of the quiver Q = [
1

a

0
a∗

]
with the distinguished 

object 0. The corresponding Yang–Baxter operator σ : Ã 
 Ã → Ã 
 Ã is given by

(a1, a∗
1) �→ (T1 a2, a∗

2 T −1
1 ) , (a2, a∗

2) �→ (a1, a∗
1) . (1.6)

Just as in the case of Artin actions, it is easy to check that (1.6) satisfies the Reidemeister conditions, and hence the 
categorical braid closure with respect to ( Ã, σ) is a link invariant. For a given β ∈ Bn , this invariant is represented by the 
equivalence class of the k-category ÃL := L( Ã, σ)[β], which we call the (fully noncommutative) link k-category4 of L = β̂ . In 
Section 7, we will show that the k-category ÃL is a natural extension of the fully noncommutative cord algebra of [13,39]
in the sense that the latter can be identified with the endomorphism algebra of an object in ÃL . Thus, in our algebraic 
formalism, the link category ÃL arises exactly the same way as the link group π1(R3\L), provided we take as an input the 
Gelfand–MacPherson–Vilonen braid action instead of the Artin representation.

At this point, we pause to remark that the notion of a categorical braid closure has already appeared in the literature: 
explicitly – in the case of groups (see [52,8]), and in a somewhat disguised form, in the theory of quandles (see, for 
example, [18,7]). From this last perspective, our results give a precise interpretation of such geometric knot invariants as a 
cord algebra in combinatorial terms of racks and quandles (see Remark 2.18 below).

However, our main observation is that the simple categorical formalism we outlined above admits an interesting general-
ization to homotopical contexts. Specifically, if the category C that we work with has a natural class W of weak equivalences 
(e.g., C is a Quillen model category or a homotopical category in the sense of [10]), then the operation of a categori-
cal braid closure is usually not invariant under weak equivalences, i.e. it is not well defined5 in the homotopy category 
Ho(C) = C[W−1]. In abstract homotopy theory, there is a standard way to remedy this problem: namely, replace a homo-
topy non-invariant functor F by its derived functor, which gives a universal approximation to F on the level of homotopy 
categories (see, e.g., [9, Section 9]). In our situation, we can define a “derived” version of the categorical braid closure by 
simply replacing the ‘colim’ in the definition (1.3) by its derived functor: the homotopy colimit ‘hocolim’. To be precise, given 
a co-Cartesian Yang–Baxter operator (A, σ) in (say) a model category C , we define the homotopy braid closure of β ∈ Bn with 
respect to (A, σ) by

hL(A,σ )[β] := hocolim [ A(n) (β, id)←−−−− A(n) 
 A(n) (id, id)−−−−→ A(n) ] . (1.7)

One of our main results (Theorem 3.4) states that if (A, σ) satisfies the Reidemeister conditions (and A is flat in an appro-
priate sense), then the weak equivalence class of the homotopy braid closure on A, i.e. the isomorphism class of (1.7) in 
the homotopy category Ho(C), is invariant under the Markov moves, and hence defines a link invariant. This last invariant 
is more refined than the one given by the usual categorical braid closure in the same way as the homotopy type of a 
topological space is a more refined invariant of the space than just its fundamental group.

Now, let us return to our basic example of the co-Cartesian Yang–Baxter operator ( Ã, σ) associated with the GMV action, 
see (1.6). To define the homotopy braid closure with respect to this operator, we will regard the k-category Ã as an object 
of the category dgCat∗k comprising all (small) pointed DG categories. The category dgCat∗k has a natural model structure, 
in which the weak equivalences are the quasi-equivalences6 of DG categories (see [48]). Its homotopy theory has been 
extensively studied in recent years with a view towards applications in algebraic geometry and representation theory (see, 
e.g., [31,50] and references therein).

The homotopy braid closure of the GMV action in the model category dgCat∗k gives a new link invariant, which is 
a quasi-equivalence class of DG categories. For a given β ∈ Bn , formula (1.7) allows us, in fact, to construct an explicit 
representative for the corresponding quasi-equivalence class that we call the fully noncommutative link DG category ˜AL (see 
Definition 7.1). If we assume, for simplicity, that L is a knot (i.e., a link with a single component), then ˜AL contains a 
distinguished object, and the endomorphism DG algebra of that object is isomorphic to the fully noncommutative knot DGA 
constructed in [13]. This observation is part of Theorem 7.4 that we state in full generality (for links with an arbitrary 
number of components) but do not prove in this paper. Instead, we sketch a proof of an analogous result – Theorem 5.6 – 
that identifies the framed knot DGA (originally introduced in [37]) with the DG endomorphism algebra of a distinguished 
object in the homotopy braid closure of a modified GMV action. The modification amounts to collapsing all objects of the 
GMV k-category Ã(n) , except for the base object ‘0’, to a single object ‘1’, while preserving all the generating morphisms 

4 Strictly speaking, the categorical braid closure gives a specialization of the fully noncommutative link k-category, with all longitude parameters set to 
be 1 (see Remark 7.9). For a general definition of ÃL , we refer to Section 7, Definition 7.1.

5 The problem is that pointwise weak equivalences of diagrams do not necessarily induce weak equivalences of colimits, so the objects defined by 
colimits of diagrams defined up to homotopy are not well defined, even up to homotopy type.

6 Recall that a quasi-equivalence of DG categories is a DG functor F : A → B such that F : A (X, Y ) → B(F X, F Y ) is a quasi-isomorphism of k-complexes 
for all objects X, Y ∈ Ob(A ) and the induced functor on the 0th homology H0(F ) : H0(A ) ∼→ H0(B) is an equivalence of categories.
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ai and a∗
i . We also impose n extra relations a∗

i ai = (μ − 1) e1, one for each i = 1, 2, . . . , n, which depend on an invertible 
central parameter μ in the ground ring k. The resulting k-category A(n) with two objects {0, 1} inherits the GMV braid 
action (1.5), and one can still define its homotopy braid closure by formula (1.7).7

Now, as in the case of topological spaces, to compute the homotopy colimit of a diagram like (1.7), one should first 
‘resolve’ the objects by their cofibrant models R 

∼� A(n) , then replace one of the arrows by a (weakly equivalent) cylinder 
cofibration, and then take the usual colimit in the underlying category C:

hocolim [ A(n) ←− A(n) 
 A(n) −→ A(n)] ∼= colim [ R ←− R 
 R ↪→ Cyl(R) ] . (1.8)

In the category of DG categories with finitely many objects, there is a canonical cylinder object CylBL(R) defined for any 
semi-free DG category R . We call this object the Baues–Lemaire cylinder as it was originally constructed (in the case of 
chain DG algebras) in [3]. The differentials of CylBL(R) are defined by explicit formulas in terms of differentials of R , 
while for a semi-free resolution R 

∼� A(n) , the differentials of R are determined explicitly by the relations of A(n) . Thus, 
taking the colimit (1.8) with the help of the Baues–Lemaire cylinder CylBL(R), we find an explicit presentation for the knot 
DG category A, given in Definition 5.3. An elementary calculation then shows that the DG algebra A(1, 1) consisting of 
all endomorphisms of the object ‘1’ in the DG k-category A is precisely the knot DGA defined in [37]. This explains the 
‘mysterious’ algebraic formula for the differentials in Ng’s combinatorial knot DGA: it arises from the Baues–Lemaire cylinder 
on the natural DG resolution of the k-category A(n) .

In [36,37], Ng has also given an explicit description of the 0th homology of his knot DGA in terms of the knot group 
π1(R

3 \ K ) and the peripheral pair (m, l) of a meridian and longitude in π1(R3 \ K ). We extend this description to the 0th 
homology of the knot DG category, both in the framed and fully noncommutative cases (see Theorem 6.2 and Theorem 7.7). 
Our proof is purely algebraic, in contrast to a topological proof given in [36,37].

Finally, we mention one interesting application of our results that brings us back to topology. Given a link L ⊂ R
3, we 

consider the category Perv(R3, L) of perverse sheaves on R3 constructible with respect to the stratification L ↪→ R
3 ←↩R3\L

with perversity given by p(1) = 0 and p(3) = −1. Our Theorem 7.10 states that Perv(R3, L) is equivalent to the category of 
finite-dimensional left modules over the fully noncommutative link k-category ÃL . This leads to an algebraic description of 
the category Perv(R3, L) in terms of groups and quivers, similar, in spirit, to the Gelfand–MacPherson–Vilonen description 
of the category Perv(D, {p1, . . . , pn}).

The paper is organized as follows. In Section 2, we define co-Cartesian Yang–Baxter operators and the associated categori-
cal braid closure, and give two criteria – the Wada condition (Definition 2.9) and the Reidemeister condition (Definition 2.15) 
– for the categorical braid closure to be a link invariant (Theorem 2.10 and Theorem 2.17). In Section 3, we extend the 
construction of a categorical braid closure to the homotopical setting. The main result in this section is Theorem 3.4. In 
Section 4, we introduce our main example of the co-Cartesian Yang–Baxter operator associated with the GMV braid action. 
In Section 5, we calculate the homotopy braid closure with respect to the GMV operator, and show that the resulting DG 
category is an extension of Ng’s knot DGA (see Theorem 5.5 and Theorem 5.6). The main tool in this calculation is the 
Baues–Lemaire cylinder on a semi-free DG category; for the reader’s convenience, we review its construction is some detail. 
In Section 6, we compute the 0th homology of the knot DG category, called the knot k-category, and give a description of 
this category in terms of the knot group together with a peripheral pair (see Theorem 6.2). In Section 7, we define the fully 
noncommutative link DG category and extend the main results of Sections 5 and 6 to this case (see Theorem 7.4 and The-
orem 7.7). While the input for the knot DG category introduced in Sections 5 and 6 is the modified GMV action, the input 
for the fully noncommutative case is the original GMV action. This allows us to relate the corresponding module category to 
perverse sheaves (see Theorem 7.10). Finally, in Section 8, we give two natural generalizations of the GMV operator, inspired 
by the work of Wada [52] and Crisp–Paris [8] in the group case. These generalizations satisfy the Reidemeister conditions, 
and hence the corresponding homotopy braid closures give link invariants generalizing the link DG category associated with 
the original GMV action. We will discuss these new link invariants elsewhere.

2. Yang–Baxter operators and categorical braid closure

Let C be a category closed under finite colimits. Let A ∈ C be an object of C . For an integer n ≥ 2, we denote the n-fold 
coproduct of copies of A in C by A(n) := A 
 n. . . 
 A. If f : A → B is a morphism in C , we denote its n-fold coproduct by 
f (n) : A(n) → B(n) . Now, suppose that we are given an object A and a morphism σ : A 
 A → A 
 A in C . Then, for each 
n ≥ 2 and i = 1, 2 . . . , n − 1, σ induces a morphism σi,i+1 : A(n) → A(n) defined by

σi,i+1 := id(i−1) 
 σ 
 id(n−i−1) : A(n) → A(n).

Definition 2.1. A co-Cartesian Yang–Baxter operator on A is an invertible morphism

σ : A 
 A → A 
 A

7 To introduce the second central parameter λ ∈ k× we also modify the arrow (β, id) in the homotopy colimit (1.7) by appropriately twisting the action 
map β : A(n) → A(n) (see Section 4).
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satisfying the equation

σ23 σ12 σ23 = σ12 σ23 σ12 in HomC(A(3), A(3)) . (2.2)

We will often use the term “Yang–Baxter” as an adjective for an invertible morphism σ satisfying (2.2).

Any co-Cartesian Yang–Baxter operator σ on A extends in a natural way to a left action of the Artin braid group Bn on 
A(n) for each n ≥ 2. We refer to this action as the action generated by σ .

We give two basic examples of co-Cartesian Yang–Baxter operators corresponding to two classical representations of the 
braid group Bn .

Example 2.3. Let C = Gr be the category of groups, and let A = F1 ∈ C be the free group on one generator. Consider the 
map σ : A 
 A → A 
 A given by

σ : F2 → F2 x1 �→ x1x2x−1
1 , x2 �→ x1.

As mentioned in the Introduction, this is a Yang–Baxter map generating the Artin representations.8

Example 2.4. Let C = Mod(R) be the category of modules over the commutative ring R = Z[t, t−1]. Take A = R to be the 

free R-module of rank one, and define the map σ : R⊕2 → R⊕2 by left multiplication by the matrix 
[

1 − t t
1 0

]
. This map 

is a co-Cartesian Yang–Baxter operator in the category Mod(R) generating the classical (unreduced) Burau representations.

Now, given a co-Cartesian Yang–Baxter operator σ : A 
 A → A 
 A, we denote the resulting braid group action on the 
n-fold coproduct by

φ
(A,σ )
n : Bn → Aut A(n).

Abusing notation, for a braid β ∈ Bn , we will often write the automorphism φ(A,σ )
n (β) simply as β if the underlying Yang–

Baxter operator is understood to be (A, σ).

Definition 2.5. The categorical braid closure of a braid β ∈ Bn with respect to a co-Cartesian Yang–Baxter operator σ : A 

A → A 
 A is defined to be the coequalizer

L(A,σ )[β] := coeq
[

A(n)
β

id
A(n)

]
,

or equivalently, the following pushout in C:

L(A,σ )[β] = colim [ A(n) (β, id)←−−−− A(n) 
 A(n) (id, id)−−−−→ A(n) ] .

Recall that the coequalizer of two morphisms f : X → Y and g : X → Y in C is an object E ∈ C given together with a 
morphism p : Y → E such that the pair (E, p) is universal among all pairs satisfying pf = pg . In practice, computing the 
coequalizer amounts to taking a quotient of the object Y by the relations f (x) = g(x) for all x ∈ X . Thus, in Example 2.3, 
the categorical closure of β ∈ Bn is the group presented by

L(A,σ )[β] = 〈 x1, . . . , xn | β(x1) = x1, . . . , β(xn) = xn 〉 .

The next theorem is a classical result first stated by E. Artin in [2] and proved by J. Birman in [6].

Theorem 2.6 (Artin–Birman). The categorical closure of a braid β ∈ Bn with respect to the Artin representation is the fundamental 
group of the link complement R3\L, where L = β̂ is the closure of the braid β .

Similarly, in Example 2.4, the categorical closure of β ∈ Bn is the module over R = Z[t, t−1] given by

L(R,σ )[β] = coker[R⊕n id−β−−−→ R⊕n] . (2.7)

In this case, we have the following theorem due to D. Goldschmidt [21].

8 In the literature (see, e.g., [6]), it is more common to extend σ to a right braid action. Thus, if � : Bn → Bn is the anti-isomorphism of Bn where 
�(σi) = σi , then the automorphism in the convention of [6] corresponding to the element β ∈ Bn is equal to the automorphism in our present convention 
corresponding to the element �(β) ∈ Bn .
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Theorem 2.8. The categorical closure of a braid with respect to the Burau action is the Alexander module of the unlinked disjoint union 
L ∪ O of the braid closure L = β̂ with the unknot O .

Thus, the categorical braid closure of both the Artin and Burau examples are link invariants. This raises the natural 
question: when does the categorical braid closure of a co-Cartesian Yang–Baxter operator produce a link invariant? To 
address this question, we begin with the following definition.

Given a map σ : A 
 A → A 
 A, we consider the coequalizer

E := coeq
[

A
σ◦i2

i2

A 
 A
]

where i2 : A → A 
 A is the canonical map identifying A with its second copy in A 
 A. We let p : A 
 A → E denote the 
universal map such that p ◦ σ ◦ i2 = p ◦ i2.

Definition 2.9. We say that the map σ is Wada if the following composition is an isomorphism in C:

j′ : A
i1−→ A 
 A

p−→ E.

For a Wada map σ , we consider the map

j : A
i1−→ A 
 A

σ−→ A 
 A
p−→ E

and define the torsion of σ to be the map

χ(σ ) = ( j′)−1 ◦ j : A → A.

We say that a Wada map σ has trivial torsion if χ(σ ) = idA is the identity map.

As an easy exercise for the reader, we recommended to check that both the Artin and Burau Yang–Baxter operators have 
trivial torsion. The next theorem explains why the categorical braid closures of these operators give link invariants.

Theorem 2.10 (Wada). Suppose that a co-Cartesian Yang–Baxter operator σ : A 
 A → A 
 A is Wada with trivial torsion, then the 
isomorphism type of the categorical braid closure is invariant under Markov moves, and hence give a link invariant.

This theorem was proved in [52] in the special case when C is the category Gr of groups, and the object A ∈ Gr is the 
free group F1 on one generator. However, the arguments of [52] can be easily formalized and extended to a proof in the 
general case.

The Wada condition involves coequalizers, which makes its verification somewhat clumsy in practice (especially, in the 
homotopical setting which we will discuss in the next section). We therefore introduce another condition on σ that, among 
other things, turns the Wada condition into a simpler form.

Definition 2.11. We say that a map σ : A 
 A → A 
 A is dualizable if

(1) The map σ : A 
 A → A 
 A is invertible.
(2) The map σ R

U = (σ ◦ i2, i2) : A 
 A → A 
 A is invertible.
(3) The map σ L

U = (σ ◦ i1, i1) : A 
 A → A 
 A is invertible.

With this definition, we have the following proposition.

Proposition 2.12. Assume that σ : A 
 A → A 
 A is dualizable. Consider the composition of maps

( j, j′) : A 
 A
σ L

U−−→ A 
 A
(σ R

U )−1

−−−−→ A 
 A
∇−→ A , (2.13)

where ∇ is the canonical folding map. Then, σ is Wada if and only if the map j′ is an isomorphism. In this case, the torsion of σ is given 
by

χ(σ ) = ( j′)−1 ◦ j. (2.14)

Next, we introduce our main definition.

Definition 2.15. We say a map σ : A 
 A → A 
 A is Reidemeister if it is Yang–Baxter, dualizable, and Wada with invertible 
torsion χ(σ ) (see Proposition 2.12).
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In Theorem 2.10, we required the torsion of σ to be trivial. However, in our main example of the co-Cartesian Yang–
Baxter operator associated with the GMV action (see Section 4), the torsion is not trivial, but invertible. It turns out, if 
σ is Reidemeister, with not necessarily trivial torsion, then an analogue of Theorem 2.10 holds, provided we modify the 
categorical braid closure in an appropriate way. From now on, for simplicity, we will work with knots (i.e., links with one 
component), while all that follows holds for the general case of links (see [4] for more details).

Let σ : A 
 A → A 
 A be a Reidemeister operator with (invertible) torsion χ : A → A. Suppose that β ∈ Bn is a braid 
that closes to a knot β̂ = K . Write w = w(β) for the writhe of β .

Definition 2.16. The normalized categorical closure of β with respect to σ is defined by

L̄(A,σ )[β] = coeq
[

A(n)

0

id
A(n)

]
,

where 
0 is the composition of morphisms: A(n) χ−w 
 id(n−1)

−−−−−−−−→ A(n) β−→ A(n) .

Theorem 2.17. For any Reidemeister operator σ : A 
 A → A 
 A, the isomorphism type of the normalized categorical braid closure 
is invariant under Markov moves, and hence gives a knot invariant.

There is a conceptual way to prove Theorems 2.10 and 2.17 by interpreting the categorical braid closure as an abstract 
trace in the sense of [27]. To this end, we extend the category C to a larger category Ĉ with the same object set Ob(Ĉ) =
Ob(C). The hom-set HomĈ(A, B) in Ĉ is given by the set of cospans [B → X ← A] modulo isomorphisms that are identity 
on A and B . The composition in Ĉ is defined by pushouts in the obvious way. The category Ĉ has a monoidal product 
� induced by the coproduct in C; hence the monoidal structure of Ĉ extends the co-Cartesian monoidal structure on 
C in the sense that there is a faithful, strongly monoidal functor ι : (C, 
) ↪→ (Ĉ, �). Moreover, the monoidal category 
(Ĉ, �) has a canonical pivotal structure, and therefore an abstract trace axiomatized in [27] and [44]. This construction 
allows us to interpret the categorical braid closure as an abstract trace in Ĉ , and the Wada condition (Definition 2.9) can 
then be interpreted as a condition on the partial trace of σ viewed as a morphism in Ĉ under the faithful embedding 
ι : C ↪→ Ĉ . We remark that the Wada condition reinterpreted this way is analogous to a condition on partial trace for 
“enriched Yang–Baxter operators” introduced by Turaev in [51]. This interpretation allows us to prove Theorem 2.10 and 
Theorem 2.17 by diagrammatic tensor calculus. In fact, starting with a Reidemeister operator, one can construct a ribbon 
category (in the sense of [41]), whose associated link invariant, which lives in the set HomĈ(φ, φ) of isomorphism classes of 
objects in C , coincides with the categorical braid closure. One can see this as another justification for the term “categorical 
braid closure”. For details, we refer the reader to [4].

Remark 2.18. The notion of a co-Cartesian Yang–Baxter operator is closely related to biracks and biquandles.9 To make this 
relation precise, we recall the (dual) Yoneda embedding C ↪→ Fun(C, Set) for a category C that associates with an object 
A ∈ C the corepresentable functor hA := Hom(A, – ) : C → Set. A cobirack structure on A can then be defined by factoring 
hA into a composition of functors C → Birack

forget−−−→ Set. Similarly, a cobiquandle structure on A is the factorization of 
hA into a composition of functors C → Biquandle

forget−−−→ Set. Then, one can show that, giving a cobirack structure on A
is equivalent to giving a dualizable co-Cartesian Yang–Baxter operator on A. Similarly, giving a cobiquandle structure on A
is equivalent to giving a Reidemeister operator on A with trivial torsion. Thus, in particular, given a Reidemeister operator 
on A with trivial torsion, the set XB = HomC(A, B) has a natural biquandle structure for any object B ∈ C . In fact, many 
examples of biquandles in the literature arise in this manner. (In particular, almost all examples of biquandles given in [18]
are of this form.)

Given a biquandle X and a link L, one can define a combinatorial link invariant called ColX (L), which is the set of 
colorings of a link diagram of L by the biquandle X (see [18]). If the link L is the closure of a braid β ∈ Bn , and if the 
biquandle X = XB arises from a cobiquandle structure on an object A in the sense above, then we have

ColXB (L) = HomC(L(A,σ )[β], B) .

This last formula gives a combinatorial interpretation of the categorical braid closure in terms of arcs of a link diagram that 
we alluded to in the Introduction.

3. Homotopy braid closure

In this section, we will work with model categories and assume the reader to have some familiarity with the theory 
of model categories and derived functors. For an excellent introduction, we recommend the article by Dwyer and Spalinski 

9 For the definition and basic examples of biracks and biquandles we refer to [18,7].
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[9], which covers enough material for the present paper. For a more comprehensive study of model categories, we refer to 
[22,23].

If C is a model category, then the notion of a categorical braid closure associated with a co-Cartesian Yang–Baxter 
operator in C admits a natural generalization, which is obtained by replacing colimits in Definition 2.5 and Definition 2.16
by homotopy colimits. The analogues of Theorem 2.10 and Theorem 2.17 hold in this homotopical setting, provided that the 
object A satisfies a pseudoflatness condition (which roughly says that the n-fold homotopy coproduct of A coincides with 
the n-fold coproduct of A). Since the translation to the homotopical context is fairly straightforward, we omit here formal 
details. Instead, we will give explicit definitions and statements only in the case where the notion of a normalized braid 
closure is further refined by allowing the knot in question to be colored by certain maps.

Definition 3.1. Given a co-Cartesian Yang–Baxter operator σ : A 
 A → A 
 A, we say that a map θ : A → A is σ -natural if 
the following two diagrams commute

A 
 A σ

θ 
 id

A 
 A

id 
 θ

A 
 A σ

id 
 θ

A 
 A

θ 
 id

A 
 A σ A 
 A A � A σ A 
 A

Now, let σ : A 
 A → A 
 A be a Reidemeister operator with (invertible) torsion χ : A → A, and let θ : A → A be a 
σ -natural map. Suppose that β ∈ Bn is a braid that closes to a knot β̂ = K .

Definition 3.2. The θ -colored normalized homotopy closure of β with respect to σ is defined to be the homotopy coequalizer 
in C:

hL̄θ (A,σ )[β] = hocoeq
[

A(n)



id
A(n)

]
where 
 : A(n) → A(n) is the composition

A(n) θχ−w 
 id(n−1)

−−−−−−−−−→ A(n) β−→ A(n). (3.3)

When θ = idA is the identity map, which is always σ -natural, this construction obviously reduces to the original one 
without coloring.

Theorem 3.4. Let σ : A 
 A → A 
 A be a Reidemeister operator on a pseudoflat object A in a model category C , and let θ : A → A
is a σ -natural map. Then, the isomorphism type in Ho(C) (i.e., the weak equivalence type in C) of the θ -colored normalized homotopy 
braid closure is invariant under Markov moves, and hence gives a knot invariant.

This theorem allows one to refine many classical link invariants defined by categorical braid closure. To illustrate this we 
will return to Examples 2.3 and 2.4 in Section 2.

Example 3.5. To compute the homotopy braid closure of the Burau representations (see Example 2.4), we embed the module 
category Mod(R) into the category Ch(R) of chain complexes in the usual way. The module A = R is then identified with 
the chain complex A = [0 → R → 0], with R concentrated in degree 0. The category Ch(R) has a natural (projective) model 
structure, with weak equivalences being the quasi-isomorphisms and the fibrations being the degreewise surjective mor-
phisms of complexes (see [23, Section 2.3]). Every object in this model category is pseudoflat. The corresponding homotopy 
category Ho(C) is the (unbounded) derived category D(R) of R-modules. Now, the homotopy closure of a braid β ∈ Bn with 
respect to the Burau operator σ : R⊕2 → R⊕2 is given by the mapping cone of the morphism id − β in the derived category 
D(R), i.e.

hL(R,σ )[β] = Cône(id − β) := [0 → R⊕n id−β−−−→ R⊕n → 0 ] ,

where the two copies of R⊕n are concentrated in homological degrees 0 and 1. The isomorphism class of hL(R, σ)[β] in 
D(R) is a link invariant by Theorem 3.4. Note that the homology of this complex in degree 0 is the cokernel of id − β , 
which is precisely the categorical braid closure L(R, σ)[β], see (2.7).

Example 3.6. To compute the homotopy braid closure of the Artin representations (see Example 2.3), we embed the category 
of groups into the model category sGr of simplicial groups. The model structure on sGr is inherited from the category sSet
of simplicial sets, so that the weak equivalences and fibrations of simplicial groups are the weak equivalences and fibrations 
of the underlying simplicial sets (see, e.g., [20]). The category of simplicial groups has a rich homotopy theory, which is 
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classically known to be equivalent to that of topological spaces. Precisely, there is a Quillen equivalence between sGr and 
the category Top0,∗ of connected pointed topological spaces given by the composition of functors

sGr
W−→ sSet

| – |−−→ Top0,∗ (3.7)

where W is Kan’s bar construction assigning to a simplicial group its classifying simplicial space and | – | is Milnor’s geomet-
ric realization functor. The functor (3.7) induces an equivalence of the homotopy categories Ho(sGr) ∼= Ho(Top0,∗), which 
gives a bijective correspondence between the homotopy classes of simplicial groups and the homotopy classes of pointed 
connected CW complexes (see, e.g., [20, V.6.4]). In this way, every simplicial group can be thought of as representing a 
topological space (up to homotopy).

Now, if we regard F1 as a discrete simplicial group in sGr, then the homotopy closure hL(F1, σ)[β] of a braid β ∈ Bn
with respect to the Artin operator σ : F2 → F2 is represented by a simplicial group in Ho(sGr) that corresponds under the 
above equivalence to the link complement R3\L of the closure L = β̂ (cf. [5, Proposition 7.1]):

| W hL(F1,σ )[β] | � R
3\L .

Thus, in the case of Artin representations, the homotopy braid closure completely recovers the homotopy type of the space 
R

3 \ L, while the categorical braid closure gives only its fundamental group.

Remark 3.8. Theorem 3.4 holds in a more general case, when various conditions on the map σ hold only up to homotopy. 
For example, one can require the Yang–Baxter equation (2.2) to hold only in Ho(C), the maps in Definition 2.11 to be only 
weak equivalences and the map j : A → A defined in (2.13) to be only an isomorphism in Ho(C). The braid group action, 
as well as the torsion map, are then only defined in Ho(C). This makes a precise definition of a homotopy braid closure a 
little tedious. We omit it here, referring the reader to [4] instead.

4. The Gelfand–MacPherson–Vilonen action

In this section, we fix a commutative ring k with unit. By a k-category, we mean a category enriched over the category of 
k-modules. Let Cat∗k be the category of all (small) pointed k-categories, where a k-category A is pointed if there is a distin-
guished object ∗ ∈ A . Maps (i.e., k-linear functors) between pointed k-categories are required to preserve the distinguished 
objects.

As in the Introduction, we consider the path category k〈Q 〉 of the quiver Q = [
1

a

0
a∗

]
Let T ∈ k〈Q 〉(0, 0) be 

the element in the endomorphism algebra of k〈Q 〉 of the object 0 defined by T = e0 + aa∗ , and let Ã be the k-category 
Ã = k〈Q 〉[T −1], which is pointed by taking the object 0 as the distinguished object.

The coproduct in Cat∗k is given by the fusion product, i.e. the coproduct of X, Y ∈ Cat∗k is the k-category obtained by 
collapsing the two distinguished objects in the disjoint union of X and Y into a single object. In particular, the n-fold 
coproduct of Ã ∈ Cat∗k is the k-category Ã(n) defined in (1.4).

We begin with the following result mentioned in the Introduction.

Theorem 4.1 (Gelfand, MacPherson, Vilonen). The map σ : Ã(2) → Ã(2) defined by (1.6) is a co-Cartesian Yang–Baxter operator on 
the object Ã in the category Cat∗k . We call σ the GMV operator.

The GMV operator induces an action of Bn on Ã(n) , where the generator σi ∈ Bn acts on objects by swapping i and i + 1, 
while fixing all other objects, and on morphisms by formula (1.5). The next observation is straightforward to check.

Lemma 4.2. The GMV operator (1.6) is Reidemeister with torsion given by

χ : Ã → Ã, a �→ T a, a∗ �→ a∗T −1. (4.3)

As explained in the Introduction, formula (1.5) for the braid group action first appeared in [19] in relation to perverse 
sheaves. More precisely, it was shown in [19] that any choice of ‘cuts’ (i.e., a family � of n simple curves on D \ {p1, . . . , pn}, 
going from a chosen point near pi to the chosen endpoint p0 near the boundary ∂ D , so that any two such curves intersect 
only at p0) induces an equivalence of categories Ẽ� : Perv(D, {p1, . . . , pn}) � Q̃ from the category of perverse sheaves on 
the disk D with only possible singularities at the points {p1, . . . , pn}, to a quiver category Q̃ isomorphic to the category 
Mod( Ã(n)) of finite-dimensional modules over the k-category Ã(n) .

Now, the braid group Bn acts as a mapping class group on the disk D with n marked points {p1, . . . , pn}, and hence 
acts (in a certain sense) on the category Perv(D, {p1, . . . , pn}). If we fix a family � of cuts, this translates to an action of 
Bn on the quiver category Q̃. In fact, it is shown in [19] that there is a strict action of Bn on the quiver category Q̃ that 
coincides under the equivalence Ẽ� with the natural action on the category Perv(D, {p1, . . . , pn}) (see [19, Proposition 1.3]). 
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This strict Bn action on the quiver category Q̃ is in fact induced by the action (1.5) on the k-category Ã(n) . More precisely, 
the left action (1.5) induces a strict left action on the module category Mod( Ã(n)) where β ∈ Bn acts by M �→ (β−1)∗(M). 
This coincides under the isomorphism of categories Mod( Ã(n)) ∼= Q̃ with the strict Bn action on the quiver category Q̃
constructed in [19].

Remark 4.4. In the notation of [19], a module M ∈ Mod( Ã(n)) corresponds to the representation of the quiver Q (n) which 
is given by a collection of vector spaces and maps M(0) = A, M(i) = Bi , M(ai) = qi , M(a∗

i ) = pi . The functors (σ−1
i )∗ on 

modules correspond to the operations denoted by Ti . For example, ((σ−1
i )∗M)(a j) means Ti(q j) in the notation of [19].

Next, we introduce a slight modification of the GMV action. Let Q n denote the following quiver

Q n := 1

a1

an

...
0

a∗
1

a∗
n

(4.5)

Fix an invertible element μ ∈ k× , and define the k-category A(n) by

A(n) = k〈Q n〉/(a∗
i ai = (μ − 1)e1)i=1,...,n. (4.6)

Notice that the elements Ti = e0 + aia∗
i are invertible in A(n) for all i = 1, 2, . . . , n. Hence, formula (1.5) still defines a braid 

group action on A(n) .
The k-category A(n) is obtained from Ã(n) by applying the following two operations:

(1) taking the quotient of Ã(n) modulo the relations a∗
i ai = (μ − 1)ei ,

(2) collapsing the vertices {1, . . . , n} into a single vertex 1.

The GMV braid action on Ã(n) descends to a braid action on A(n) , which we will call the μ-central GMV action.
One advantage of working with the μ-central GMV action is that it fixes the set of objects of A(n) . In particular, one can 

consider the induced braid action on the endomorphism algebra of any object of A(n) . Specifically, let A(n)(1, 1) denote the 
endomorphism algebra of the object ‘1’ in A(n) . For i, j = 1, 2, . . . , n, consider the elements Aij := −a∗

i a j ∈ A(n)(1, 1). Then, 
it is easy to see that the algebra A(n)(1, 1) has the following presentation

A(n)(1,1) = k〈Aij〉/(Aii = 1 − μ).

It is straightforward to compute the induced braid group action on this algebra in terms of the generators Aij . However, we 
will write the corresponding formulas in terms of other generators aij related to Aij by a simple rescaling:

aij :=
{

Aij , i < j

−μ−1 Aij , i > j.
(4.7)

The associative algebra A(n)(1, 1) is free on these generators, and the braid group action on A(n)(1, 1) is given by

σk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki �→ ak+1,i − ak+1,k aki (i 	= k,k + 1)

aik �→ ai,k+1 − aik ak,k+1 (i 	= k,k + 1)

ak+1,i �→ aki (i 	= k,k + 1)

ai,k+1 �→ aik (i 	= k,k + 1)

ak,k+1 �→ −ak+1,k

ak+1,k �→ −ak,k+1

aij �→ aij (i, j 	= k,k + 1).

(4.8)

Formulas (4.8) first appeared in [24,25] as a generalization of the classical Magnus action [32]; we therefore call (4.8) the 
Humphries–Magnus braid action. The Humphries–Magnus braid action was used by Ng in [35–39] as part of his definition of 
the (combinatorial) knot DGA (see, e.g., [39], Definition 3.3). Now, the main results of the present paper in relation to Ng’s 
work can be summarized schematically by the following diagram.
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μ-central
GMV action

A(n) �→ A(n)(1,1)

Homotopy
braid closure

Humphries-Magnus
action

Ng construction

Knot DG category
A �→ A (1,1)

Knot DGA

(4.9)

5. The knot DG category

Let C = dgCat{0,1}
k be the category comprising all small DG k-categories with object set {0, 1}. The morphisms of such DG 

categories in C are required to be the identity map on the object set {0, 1}. The k-category A(n) defined in (4.6) can then be 
identified with the n-fold coproduct of copies of A := A(1) in the category C . Moreover, the μ-central GMV action is induced 
by a co-Cartesian Yang–Baxter operator σ : A 
 A → A 
 A given by the same formula as in (1.6). The same calculation 
as in Lemma 4.2 shows that this co-Cartesian Yang–Baxter operator is Reidemeister with torsion given by formula (4.3). 
Moreover, the following lemma gives a σ -natural map (Definition 3.1) that can be used to color a knot.

Lemma 5.1. For any element λ ∈ k× , the map θλ : A → A given by (a, a∗) �→ (λ−1a, λa∗) is σ -natural.

The category C = dgCat{0,1}
k has a model structure, in which a morphism f : X → Y is a weak equivalence (resp., fibra-

tion) if and only if for any pair of objects a, b ∈ X , the map f : X(a, b) → Y (a, b) is a quasi-isomorphism (resp., surjection) 
of chain complexes. This model category is cofibrantly generated; therefore the cofibrations can be characterized as re-
tracts of relative cell complexes (see [22,4]), which in particular, include semi-free extensions by arrows in non-negative 
(homological) degree.

One can show that the k-category A viewed as an object of the model category C = dgCat{0,1}
k is pseudoflat. Therefore, 

the colored normalized homotopy braid closure (Definition 3.2) with respect to the GMV operator (A, σ) and the coloring 
θ = θλ:

hL̄θ (A,σ )[β] := hocoeq
[

A(n)



id
A(n)

]
= hocolim

[
A(n) (
,id)←−−−− A(n) 
 A(n) (id,id)−−−−→ A(n)

]
(5.2)

gives a quasi-isomorphism type in the category C = dgCat{0,1}
k , which is a knot invariant.

We now describe this knot invariant in explicit terms. Let Q be the following graded quiver

Q = 1

b1...
bn

a1...
an

ηn···η1 0

b∗
1

...

b∗
n

a∗
1

...

a∗
n

where the degrees of arrows are assigned by

deg(a1) = . . . = deg(an) = deg(a∗
1) = . . . = deg(a∗

n) = 0

deg(b1) = . . . = deg(bn) = deg(b∗
1) = . . . = deg(b∗

n) = 1

deg(η1) = . . . = deg(ηn) = 2.

Let β ∈ Bn be a braid that closes to a knot K .

Definition 5.3. We defined the knot DG category of K to be the DG k-category

AK = k〈Q〉/(a∗
i ai = (μ − 1)e1)1≤i≤n

with differential given by
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d(bi) = 
(ai) − ai

d(b∗
i ) = 
(a∗

i ) − a∗
i

d(ηi) = −b∗
i ai − 
(a∗

i )bi

(5.4)

where 
 : A(n) → A(n) is the map defined in (3.3).

Our main results regarding the knot DG category A = AK can be encapsulated into the following two theorems.

Theorem 5.5. The knot DG category A represents the quasi-isomorphism type of the homotopy coequalizer (5.2). Hence, the quasi-
isomorphism type of the knot DG category A is independent of the choice of a braid β that closes to a given knot K .

Theorem 5.6. Let the base commutative ring be k =Z[μ±1, λ±1]. Then, the quasi-isomorphism type of the endomorphism DG algebra 
A (1, 1) coincides with the quasi-isomorphism type of the knot DGA constructed in [37].

Theorem 5.6 gives an alternative proof of one of the main results in [35,37] that states that the underlying quasi-
isomorphism type of the combinatorial knot DGA is a knot invariant.10

Proof of Theorem 5.6. Define the following morphisms in A , which are elements of the endomorphism DG algebra A (1, 1)

of different homological degrees:

Aij = −a∗
i a j ∈ A (1,1)0

Bij = b∗
i a j ∈ A (1,1)1

Cij = a∗
i b j ∈ A (1,1)1

Dij = b∗
i b j ∈ A (1,1)2

ei = −ηi ∈ A (1,1)2.

(5.7)

Then, the DG algebra A (1, 1) is freely generated by the elements (5.7), modulo the relations Aii = 1 − μ. The differentials 
of these elements can be easily computed by the Leibniz rule, using formulas (5.4):

d(Aij) = 0

d(Bij) = 
(a∗
i )a j − a∗

i a j

d(Cij) = a∗
i 
(a j) − a∗

i a j

d(Dij) = (
(a∗
i ) − a∗

i )b j + b∗
i (
(a j) − a j)

d(ei) = b∗
i ai + 
(a∗

i )bi .

(5.8)

This explicit description allows one to identify A (1, 1) with the combinatorial knot DGA as defined in [37, Definition 2.6]
(see also [39]). See [4] for details of this calculation. �

To prove Theorem 5.5, one has to calculate the homotopy pushout (5.2). As shown in [4], it suffices for this to resolve 
the right-pointing arrow by a strong cofibration (i.e. a cofibration whose domain is cofibrant), and then take the ordinary 
pushout of the resulting diagram. Thus, we need to find a semi-free resolution p : B 

∼� A and then construct an appropriate 
cylinder object Cyl(B) on B . The right-pointing arrow in the pushout diagram in (5.2) will then be resolved by taking the 
n-fold coproduct Cyl(B)(n) of this cylinder object.

To construct a semi-free resolution of A, we consider the graded quiver

Q̃ =
[

1ξ

a

0
a∗

]
(5.9)

where deg(a) = deg(a∗) = 0 and deg(ξ) = 1. Define B ∈ C to be the semi-free DG category B := k〈Q̃ 〉 with differential given 
by dξ = a∗a − (μ − 1)e1. Then, one can show (see [4]) that the canonical map

p : B → A, a �→ a, a∗ �→ a∗, ξ �→ 0

is a quasi-isomorphism. Thus, B can be used as a cofibrant replacement for A.

10 Note, however, that the results in [35,37] are slightly stronger as they refer to the invariance of the stable tame isomorphism type rather than the 
quasi-isomorphism type of the corresponding knot DGA.
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Next, to define a cylinder on B , we will use the construction of canonical cylinder objects for the semi-free DG algebras 
given in [3]. This construction will play an important role in our calculations, so we review it in some detail.

Let R be a DG algebra whose underlying graded algebra is free over a graded k-module V . We write R = (T (V ), d). Let 
Cyl(R) be the graded algebra defined by Cyl(R) := T (V ⊕ V ′ ⊕ sV ), where sV = V [1] is the graded vector space obtained 
by shifting the (homological) degree of V up by 1. The inclusion of V into the two copies V and V ′ in Cyl(R) induces two 
maps of graded algebra i : R → Cyl(R) and i′ : R → Cyl(R).

We say that a map S : R → Cyl(R) of graded k-modules of degree −1 is a (i, i′)-derivation if, for all homogeneous 
elements a, b ∈ R , we have

S(ab) = S(a) · i′(b) + (−1)|a|i(a) · S(b).

It is easy to see that there exists a unique (i, i′)-derivation S : R → Cyl(R) such that S(v) = sv ∈ sV ⊂ Cyl(R) for all v ∈ V . 
This derivation S allows us to define a differential on Cyl(R). Indeed, there exists a unique derivation dCyl : Cyl(R) → Cyl(R)

of degree −1 satisfying

(1) dCyl ◦ i = i ◦ d

(2) dCyl ◦ i′ = i′ ◦ d

(3) dCyl ◦ S = i − i′ − S ◦ d.

(5.10)

It follows from (5.10) that d2
Cyl = 0, which is easy to check on generators of Cyl(R). Hence, dCyl makes Cyl(R) into a DG 

algebra Cyl(R) = (T (V ⊕ V ′ ⊕ sV ), dCyl).
Next, we define a map π : Cyl(R) → R by sending the two copies of V in R = T (V ⊕ V ′ ⊕ sV ) identically onto V ⊂

T (V ) = R and sV to zero. It is straightforward to check that π is a map of DG algebras and, in fact, a quasi-isomorphism 

from Cyl(R) onto R . Thus, together with i and i′ , the map π fits in the diagram R 
 R 
(i,i′)
↪→ Cyl(R) 

π� R , which shows 
that Cyl(R) is a cylinder object on R . We emphasize that this cylinder object is canonically attached to the semi-free DG 
algebra R . We call it the Baues–Lemaire cylinder on R .

The above construction can be naturally extended to semi-free DG categories, i.e. DG categories whose underlying graded 
category is freely generated by a set of arrows. In our present situation, the underlying graded category of the DG category 
B is freely generated by the graded quiver (5.9). Hence, the Baues–Lemaire construction of the cylinder on R = T (V ) can be 
carried over to B = k〈Q̃ 〉.

Specifically, let c Q̃ = Q̃ 
 Q̃ ′ 
 (Q̃ [1]) be the graded quiver

c Q̃ = 1

b

a

a′
ξξ ′η 0

b∗
a∗
a′ ∗ (5.11)

which has three copies {a, a∗, ξ}, {a′, a′ ∗, ξ ′} and {b, b∗, η} of the generating arrows of Q̃ , with {b, b∗, η} having homological 
degree shifted up by 1. Thus,

deg(a) = deg(a′) = deg(a∗) = deg(a′ ∗) = 0

deg(ξ) = deg(ξ ′) = 1

deg(b) = deg(b∗) = 1

deg(η) = 2.

Then, we define Cyl(B) to be the graded k-category Cyl(B) := k〈c Q̃ 〉, with differential d = dCyl given by the Baues–Lemaire 
formulas (5.10):

d(ξ) = a∗a − (μ − 1)e1

d(ξ ′) = a′ ∗a′ − (μ − 1)e1

d(b) = a − a′

d(b∗) = a∗ − a′ ∗

d(η) = ξ − ξ ′ − b∗a′ − a∗b.

(5.12)
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For example, by Equation (3) in (5.10), we have

d(η) = d(S(ξ)) = i(ξ) − i′(ξ) − S(d(ξ))

= ξ − ξ ′ − S(a∗a − (μ − 1)e1)

= ξ − ξ ′ − b∗a′ − a∗b.

The following proposition implies that Cyl(B) is indeed a cylinder object on B .

Proposition 5.13. The canonical map π : Cyl(B) → B defined by

π(a) = π(a′) = a, π(a∗) = π(a′ ∗) = a, π(ξ) = π(ξ ′) = ξ,

π(b) = 0, π(b∗) = 0, π(η) = 0

is a quasi-isomorphism.

Now, as explained in the Introduction, the homotopy pushout (5.2) can be computed as the ordinary pushout of the 
following diagram

A(n) (
,id(n))◦(p(n),p(n))←−−−−−−−−−−−− B(n) 
 B(n) (i(n),i′ (n))
↪→ Cyl(B)(n). (5.14)

A straightforward calculation shows that the result is the knot DG category presented in Definition 5.3.

6. The knot category

Let K be a knot, and let AK be the knot DG category of K presented in Definition 5.3.

Definition 6.1. We call the 0-th homology of AK the knot k-category of K and denote it by AK := H0(AK ). This is a 
k-category whose isomorphism class is a knot invariant.

Let π = π1(R
3\K ) be the knot group of K . Consider the group algebra k[π] as a k-category with one object 0. Similarly, 

the ring k can itself be considered a k-category with one object 1, which we denote by 1{1} . Let k[π]+ = k[π] 
 1{1} be the 
disjoint union of these two k-categories. Thus, k[π]+ ∈ Cat{0,1}

k is a k-category with object set {0, 1}. Now, let k[π]+〈a, a∗〉 be 
the free extension in Cat{0,1}

k of k[π]+ by the arrows a, a∗ where a goes from the vertex 1 to the vertex 0, while a∗ goes in 
the opposite direction, i.e. from 0 to 1. We will denote this k-category schematically by

k[π]+〈a,a∗〉 =
[

•
a

k[π]
a∗

]
.

Then, we have the following description of the knot k-category in terms of the peripheral pair (π, (m, l)), where m, l ∈ π are 
respectively a meridian and a longitude of the knot K .

Theorem 6.2. The knot k-category AK can be described as

AK ∼= k[π]+〈a,a∗〉/ J

where J is the ideal generated by the following elements

(1) aa∗ + e0 − m
(2) a∗a + e1 − μe1
(3) λa − la , λa∗ − a∗l.

Remark 6.3. A peripheral pair (m, l) is well defined up to inner automorphisms of π. Suppose that (m′, l′) = (γ mγ −1, γ lγ −1)

is another such pair, then letting a′ = γ a and (a∗)′ = a∗γ −1, we reduce the defining relations (1)–(3) of the k-category AK

to the same form written in terms of a′, (a∗)′, l′, m′. Hence, up to isomorphism, this k-category is independent of the choice 
of the peripheral pair.

To prove Theorem 6.2, we notice that the braid group Bn acts on the elements Ti ∈ A(n)(0, 0) the same way as it acts on 
the generators xi ∈ Fn in the Artin representation. This implies that, after taking the categorical braid closure, there is a map 
φ from k[π] to the endomorphism algebra AK (0, 0) of the knot k-category at 0, taking xi to Ti . Define φ̃ : k[π]+〈a, a∗〉 → AK

by extending the map φ, so that a �→ a1, and a∗ �→ a∗ . Then, one can show that if m = T1 ∈ π and l ∈ π is the corresponding 
1
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longitude, then the map φ̃ sends the ideal J defined in Theorem 6.2 to zero, and hence descends to a map from the quotient 
k[π]+〈a, a∗〉/ J to AK , which can be shown to be an isomorphism. (See [4] for details.)

Recall (see Theorem 5.6) that the endomorphism DG algebra of the object 1 in the knot DG category is quasi-isomorphic 
to the knot DGA. Therefore, in particular, the endomorphism algebra of the object 1 of the knot k-category recovers the 0th 
homology of the knot DGA. Thus, Theorem 6.2 implies the following.

Theorem 6.4 ([37]). The 0th homology of the knot DGA is isomorphic to the tensor algebra over k freely generated by elements [γ ], 
where γ ∈ π1(R

3 \ L), modulo the relations

(1) [e] = 1 − μ, where e is the identity element;
(2) [γ1γ2] − [γ1mγ2] − [γ1][γ2] = 0 for γ ∈ π1(R

3 \ L);
(3) [γ l] = [lγ ] = λ[γ ] for γ1, γ2 ∈ π1(R

3 \ L).

Proof. The endomorphism algebra of the object 1 of the k-category k[π]+〈a, a∗〉 is freely generated by the elements [γ ] :=
−aγ a∗ . The ideal J of Theorem 6.2 defines the relations in this endomorphism algebra, which are simply the three relations 
given in the theorem. �
Remark 6.5. Theorem 6.2 also shows that the endomorphism algebra of the knot category at the vertex 0 is given by 
AK (0, 0) = k[π]/〈(m − 1)(m − μ) , (m − 1)(l − λ)〉.

7. The fully noncommutative link DG category

Recall that, in Section 4, we have ‘simplified’ the GMV k-category Ã(n) by performing the following two operations on 
the underlying quiver:

(1) we have collapsed the vertices 1, . . . , n to a single vertex 1,
(2) we have set the elements ei + a∗

i ai to be equal to a central element μ ∈ k× .

In this section, we will work with the original GMV category Ã(n) and the associated braid action. We will show that the 
corresponding homotopy braid closure is related to the “fully noncommutative knot DGA” introduced in [13,39].

Let Ã(n) be the k-category (1.4) with the GMV braid action defined as in (1.5). Consider the elements μi = a∗
i ai + ei ∈

Ã(n)(i, i), which are now no longer central.
Suppose we are given a braid β ∈ Bn which closes to a link L with r component L = L1 ∪ . . . ∪ Lr . For each 1 ≤ i ≤ r, let 

Si be the set of strands Si ⊂ {1, . . . , n} that closes to the component Li . Note that these are precisely the orbits of the cyclic 
group generated by β acting on the set {1, . . . , n} by permutations.

Now, for each 1 ≤ i ≤ r, identify all the vertices j in A(n) that are in the set Si to a single vertex i, and identify all the 
elements μ j , for j ∈ Si , to a single element μi . Let A(n) be the resulting k-category. Then, the action map β : A(n) → A(n)

induces β : A(n) → A(n) . We can use this induced braid action to define the fully noncommutative link DG category.

Definition 7.1. The fully noncommutative link DG category of L is the DG category ˜AL , whose underlying graded k-category is 
defined to be the quotient of

k[λ±1
1 ,μ±1

1 ]{η j} j∈S1

{b j} j∈S1

{a j} j∈S1

... •

{b∗
j } j∈S1

{a∗
j } j∈S1

{b∗
j } j∈Sr

{a∗
j } j∈Sr

k[λ±1
r ,μ±1

r ]{η j} j∈Sr

{b j} j∈Sr

{a j} j∈Sr

(7.2)

modulo the relations ei + a∗
j a j = μi for all j ∈ Si , 1 ≤ i ≤ r, where the degrees of the generators are given by

deg(a j) = deg(a∗) = 0, deg(b j) = deg(b∗) = 1, deg(η j) = 2.
j j
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To define the differential, choose a strand ji ∈ Si , one for each 1 ≤ i ≤ r, and for each j ∈ Si , set

d(b j) =
{

β(a j)λ
−1
i μ

−wi
i − a j ( j = ji)

β(a j) − a j ( j 	= ji)

d(b∗
j ) =

{
λiμ

wi
i β(a∗

j ) − a j ( j = ji)

β(a∗
j ) − a j ( j 	= ji)

d(η j) =
{−b∗

j a j − λiμ
wi
i β(a∗

j )b j ( j = ji)

−b∗
j a j − β(a∗

j )b j ( j 	= ji).

(7.3)

Theorem 7.4. Let R0 be the k-category with r objects, given by the disjoint union of k-algebras

R0 = k[λ±1
1 ,μ±1

1 ] 
 . . . 
 k[λ±1
r ,μ±1

r ].
Then, the quasi-isomorphism type of the pair (R0, ˜A ) consisting of the k-category R0, together with the canonical map from R0 to the 
fully noncommutative link DG category ˜A , is a link invariant. Moreover, if we collapse the objects {1, . . . , r} to a single object 1, then 
the endomorphism DG algebra at this collapsed vertex coincides with the fully noncommutative knot DGA constructed in [13]. (Here, 
we take the base commutative ring k to be Z.)

The first part of the above theorem is proved by interpreting the fully noncommutative link DG category as a homotopy 
braid closure in a suitable model category. The second part follows from the first by a direct calculation similar to the one 
in Section 5 (see also the beginning of Section 8). The identification of the fully noncommutative link DG category with a 
homotopy braid closure is completely parallel to the μ-central case discussed above. The crucial difference, however, is that 
one should work in a different model category (see [4] for details).

The above theorem identifies the quasi-isomorphism type of the pair (R0, ˜A ); however, if we are only interested in the 
underlying quasi-equivalence type, then we have the following theorem.

Theorem 7.5. The quasi-equivalence type of the link DG category ˜A is given by the (normalized) homotopy closure of the braid β ∈ Bn

with respect to the GMV operator, taken in the category dgCat∗k of pointed DG categories with model structure defined in [48].

Notice that, in this theorem, no coloring is needed. The extra parameters λi are formed in the process of taking the 
homotopy braid closure. This is not “visible” if we, like in the μ-central case, work with a more rigid model structure, where 
the weak equivalences are quasi-isomorphisms (cf. also Remark 7.9). “Normalizing” is also not necessary in Theorem 7.5, as 
it only changes the parameter λi �→ λi μ

wi
i in R0.

Definition 7.6. The fully noncommutative link k-category of a link L is defined to be ÃL := H0( ˜AL), the 0th homology of the 
fully noncommutative link DG category of L.

The k-category ÃL can be expressed in terms of the link group, together with meridians and longitudes chosen in each 
link component. To be precise, let M = R

3\L be the link complement. For 1 ≤ i ≤ r, let ∂i M ⊂ M denote the torus boundary 
of M corresponding to the link component Li . Choose basepoints pi ∈ ∂i M , and p0 ∈ M . Then, there are canonical meridian 
and longitude elements μi, λi ∈ π1(∂i M, pi), which identify the group algebra k[π1(∂i M, pi)] as k[λ±1

i , μ±1
i ]. By choosing a 

path ai in M from pi to p0, one can define a map φi : π1(∂i M, pi) → π1(M, p0). Let mi and li be the images of μi and λi
under φi , respectively. Then, we have the following description of the fully noncommutative link category.

Theorem 7.7. The fully noncommutative link k-category ÃL is the quotient of the k-category

k[λ±1
1 ,μ±1

1 ] a1

... k[π1(M, p0)]
a∗

1

a∗k[λ±1,μ±1]

ar

(7.8)
rr r
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modulo the ideal of relations

(1) aia∗
i + e0 − mi

(2) a∗
i ai + ei − μi

(3) aiλi − liai , λia∗
i − a∗

i li .

Remark 7.9. While the fully noncommutative link DG category is the homotopy braid closure of the GMV action, it is not
true that its 0-th homology, i.e. the fully noncommutative link k-category, is the categorical braid closure of the GMV 
action. The categorical braid closure can be obtained as a specialization of the fully noncommutative link k-category when 
all parameters λi are set to be 1. This discrepancy is due to the fact that, in Tabuada’s model structure on dgCatk , the 
weak equivalences are quasi-equivalences, which, by definition, induce equivalences (not isomorphisms) of k-categories at 
the level of 0-th homology. Then, the homotopy colimits of diagrams in dgCatk with respect to Tabuada’s model structure 
induce, at the level of 0th homology, not strict colimits, but rather 2-colimits, which can be viewed, in part, as homotopy 
colimits. Thus, the fully noncommutative link k-category is already a homotopy braid closure, rather than a strict categorical 
braid closure.

As mentioned in the introduction, the fully noncommutative link k-category is closely related to perverse sheaves. To be 
precise, let S be the stratification on R3 with two strata (L, R3\L), where L is a link in R3. Following the degree conventions 
of [30], we let p be the perversity of S given by p(1) = 0 and p(3) = −1. (The values at other integers do not matter.) Then, 
we have

Theorem 7.10. Suppose that k is a field. The category Pervp(R3, L) of p-perverse sheaves of k-vector spaces on R3 constructible 
with respect to the stratification S is equivalent to the category of finite-dimensional left modules over the fully noncommutative link 
category ÃL .

Sketch of proof. Suppose that a braid β ∈ Bn is placed in the region {x < 0}, and closes to the link L by letting the two 
ends of the braid pass through the hyperplane {x = 0} and close in the region {x > 0}, as in the following diagram.

Let U , V be open subsets of R3 defined by U = {x < ε} and V = {x > −ε} for some small ε > 0. Then, both the pairs 
(U , U ∩ L) and (V , V ∩ L) are diffeomorphic to the pair (D̊ × I̊, {p1, . . . , pn} × I̊), where D̊ denotes the interior of the disk and 
I̊ denotes the open interval (0, 1). The pair (U ∩ V , U ∩ V ∩ L) is diffeomorphic to the pair (D̊ × I̊, {p1, . . . , pn, p′

1, . . . , p
′
n} × I̊). 

Therefore, the category Pervp(U , U ∩ L) can be identified with the category Perv(D, {p1, . . . , pn}) with middle perversity, 
which, under a suitable choice of ‘cuts’, is equivalent to the category Mod( Ã(n)) of finite-dimensional modules over the 
k-category Ã(n).

Similar statements are true for the pairs (V , V ∩ L) and (U ∩ V , U ∩ V ∩ L). One can show then that the following diagram 
of restriction functors

Pervp(U , U ∩ L) → Pervp(U ∩ V , U ∩ V ∩ L) ← Pervp(V , V ∩ L) (7.11)

is equivalent to the following diagram of functors

Mod(A(n))
(β∗,id)−−−−→ Mod(A(2n))

(id,id)←−−−− Mod(A(n)). (7.12)

Since perverse sheaves form a stack (see [30, Propositions 10.2.7 and 10.2.9]), the category Pervp(R3, L) is equivalent to 
the 2-limit of the diagram (7.11), and hence of the diagram (7.12). This implies the desired result. For details, see [4]. �
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When combined with Theorem 7.7, Theorem 7.10 gives a description of the category Perv(R3, L) of perverse sheaves 
in terms of linear algebra data, similar in spirit to the original description of the category Perv(D, {p1, p2, . . . , pn}) given 
in [19].

8. Generalizations and further questions

In the GMV braid action, the group Bn acts on the generators Ti = aia∗
i + e0 via the Artin representation (1.1). Thus, 

regarding the free group Fn as a category with a single object, we can regard the GMV action as an extension of the 
Artin action. In [52], Wada constructed several examples of braid group actions on Fn generalizing the classical Artin rep-
resentation. Like the Artin representation, Wada’s braid group actions are local and homogeneous, i.e. generated by a single 
cocartensian Yang–Baxter operator on F1. It is therefore natural to ask whether they admit extensions similar to the GMV 
extension.

Consider, for example, the following co-Cartesian Yang–Baxter operator constructed in [52]:

σ : F2 → F2 x1 �→ xN
1 x2x−N

1 , x2 �→ x1 ,

where N is an arbitrary (fixed) integer.
This action does admit an extension similar to the GMV action. Indeed,

σk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai �→ ai (i 	= k,k + 1)

ak �→ T N
k ak+1

ak+1 �→ ak

a∗
i �→ a∗

i (i 	= k,k + 1)

a∗
k �→ a∗

k+1T −N
k

a∗
k+1 �→ a∗

k .

(8.1)

Note that, for N = 1, this is the original GMV action (1.5). Moreover, using a result of [8], one can show that the actions 
(8.1) are non-equivalent to each other for different N ’s; thus, for N 	= 1, (8.1) is a genuine generalization of the GMV action.

The elements T ±N
i can be written in an alternative form involving the conjugate elements μi = ei + a∗

i ai ∈ Ã(n)(i, i). (We 
recall that μi are no longer central elements in Ã(n)(i, i).) Indeed, by induction, one can show that

T N
i = e0 + ai [N]μi a∗

i for all N ∈ Z

where [N]μ ∈ k are the “quantum integers” defined by

[N]μi = μN
i − 1

μi − 1
:=

⎧⎪⎨⎪⎩
ei + μi + μ2

i + . . . + μN−1
i if N > 0

0 if N = 0

−μ−1
i − μ−2

i − . . . − μN
i if N < 0.

As in Section 4, we set Aij = −a∗
i a j for all i, j. Then, we have the following formulas defining the braid group action on the 

restriction of the k-category Ã to the vertices {1, . . . , r}:

σk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aki �→ Ak+1,i − Ak+1,k [−N]μk Aki i 	= k,k + 1

Aik �→ Ai,k+1 − Aik [N]μk Ak,k+1 i 	= k,k + 1

Ak+1,i �→ Aki i 	= k,k + 1

Ai,k+1 �→ Aik i 	= k,k + 1

Ak,k+1 �→ Ak+1,k μ−N
k

Ak+1,k �→ μN
k Ak,k+1

Aij �→ Aij i, j 	= k,k + 1

μk �→ μk+1

μk+1 �→ μk

μi �→ μi i 	= k,k + 1.

Now, for i 	= j, define

aij =
{

Aij [N]μ j , i < j

Ai j [−N]μ , i > j.
(8.2)
j
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Then, the above action becomes

σk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki �→ ak+1,i − ak+1,k aki i 	= k,k + 1

aik �→ ai,k+1 − aik ak,k+1 i < k

aik �→ ai,k+1 − aik μN
k ak,k+1 μ−N

k+1 i > k + 1

ak+1,i �→ aki i 	= k,k + 1

ai,k+1 �→ aik i 	= k,k + 1

ak,k+1 �→ −ak+1,k

ak+1,k �→ −μN
k ak,k+1 μ−N

k+1

aij �→ aij i, j 	= k,k + 1

μk �→ μk+1

μk+1 �→ μk

μi �→ μi i 	= k,k + 1.

For N = 1, this coincides with the ‘fully noncommutative’ action defined in [13] (see also [39, Appendix]).
In a different direction, one can also construct a large family of GMV-type braid actions by extending the family of 

generalized Artin actions found in [8]. Specifically, let B ∈ Algk be an associative algebra over k, and let x, y ∈ B× be a pair 
of invertible and commuting elements. Let Â(n) be the k-category given by

Â(n) =
⎡⎢⎣

•
a1

· · · •

an

B ∗ n. . . ∗ B
a∗

1

a∗
n

⎤⎥⎦
which can be interpreted as an n-fold coproduct in the category Cat∗k of (small) pointed k-categories. Then, one can check 
by a direct calculation that the following assignments define a braid group action on Â(n) .

σk :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak �→ xkak+1

a∗
k �→ a∗

k+1x−1
k

bk �→ xkbk+1x−1
k

ak+1 �→ ykak

a∗
k+1 �→ a∗

k y−1
k

bk+1 �→ ykbk y−1
k

ai �→ ai (i 	= k,k + 1)

a∗
i �→ a∗

i (i 	= k,k + 1)

bi �→ bi (i 	= k,k + 1)

(8.3)

where bi is the element b ∈ B put in the i-th copy of B in B(n) := B ∗ n. . . ∗ B . Notice that, when B = k[H] is the group 
algebra of a group H , and when x = h ∈ H and y = h−1, the braid action on H (n) ⊂ k[H](n) at the vertex 0 coincides with 
the action defined in [8].

Consider any ideal I ⊂ Â(0, 0) = B〈aa∗〉, and let Â/I be the k-category obtained by quotienting Â by the ideal generated 
by I . Then, for any element f ∈ I , we have

σk( fk) = xk fk+1x−1
k σk( fk+1) = yk fk y−1

k σk( f i = f i if i 	= k,k + 1).

Therefore, the co-Cartesian Yang–Baxter operator corresponding to the above braid group action descends to the quotient 
Â/I . If we take B = k[T ±], x = T and y = 1, and consider the ideal I generated by the element aa∗ + 1 − T , then the result-
ing quotient Â/I , together with its corresponding co-Cartesian Yang–Baxter operator σ , is equivalent to the k-category Ã, 
together with the GMV operator, constructed in Section 4.

Theorem 8.4. The braid group actions (8.1) and (8.3) are generated by Reidemeister operators in the category dgCat∗k of pointed DG 
categories on objects Ã and Â/I , respectively. These objects are pseudoflat with respect to Tabuada’s model structure on dgCat∗k . Thus, 
the homotopy braid closure with respect to these operators gives link invariants that generalize the fully noncommutative link DG 
category ˜AL .
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We conclude the paper with a few questions and remarks.

1. Constructible sheaves and contact homology. Recently, some interesting work has been done on the geometric side of 
contact homology relating it to constructible sheaves (see [15,40,47,45,46]). It would be interesting to understand our The-
orem 7.10 in this geometric context and more generally, to clarify the meaning of our construction from Floer-theoretic and 
constructible sheaves point of view.

In more detail, the relation between Legendrian contact homology and constructible sheaves is based on a theorem 
of Nadler and Zaslow [34] (see also [33]) that, for any real analytic manifold M , establishes an equivalence between the 
derived category Dc(M) of constructible sheaves on M and the derived Fukaya category DFuk(T ∗M) of the cotangent bundle 
T ∗M of M . This equivalence of triangulated categories is induced by a quasi-equivalence of A∞-categories μ : Shc(M) →
TwFuk(T ∗M), where Shc(M) is a DG category defined as the DG quotient of the (naive) DG category of constructible 
sheaves on M modulo acyclic complexes and TwFuk(T ∗M) is the A∞-category of twisted complexes in the Fukaya category 
Fuk(T ∗M). The functor μ can be viewed as a categorification of the classical characteristic cycle construction and is called 
the microlocalization functor.

Now, for any conical Lagrangian submanifold �̃ ⊆ T ∗M , the restriction of the microlocalization functor to the subcat-
egory Shc(M)�̃ ⊆ Shc(M) of constructible sheaves with singular support in �̃ gives a quasi-equivalence μ : Shc(M)�̃

∼→
TwFuk(T ∗M)�̃ onto the full subcategory TwFuk(T ∗M)�̃ of the twisted Fukaya category consisting of Lagrangians whose 
boundary at infinity lies in the boundary of �̃. Such a submanifold �̃ is determined by its intersection � := �̃ ∩ ST ∗M
with the unit cotangent bundle of M; the bundle ST ∗M has a natural contact structure, and � is a Legendrian submanifold 
of ST ∗M . It turns out that the Legendrian contact homology (LHC) of the pair (ST ∗M, �) is related to the Fukaya category 
TwFuk(T ∗M)�̃ and hence, via the microlocalization functor, to the sheaf category Shc(M)�̃ . More precisely, it is expected 
that the complexes of constructible sheaves in Shc(M)�̃ determine augmentations of the Legendrian DGA of (ST ∗M, �) via 
a geometric symplectic filling construction.

In the case of one-dimensional Legendrians, this relation has been worked out in detail in [40,47]. Specifically, if M = R
2, 

then ST ∗
R

2 ∼= R
2 × S1 contains an open contact submanifold R3 ⊂ R

2 × S1. Hence, any Legendrian link L ⊂ R
3 can be 

considered as a Legendrian submanifold in ST ∗
R

2. In [40], for a Legendrian link L ⊂ R
3, the authors construct a (unital) 

A∞-category Aug+(L), whose objects are augmentations of the Chekanov–Eliashberg DG algebra of L, and show that there 
is an A∞-equivalence Aug+(L) � C1(L), where C1(L) is the full subcategory of Shc(R

2)L̃ consisting of sheaves of ‘microlocal 
rank one along the link L’.

A possible extension of this equivalence to higher dimensions (specifically, to the case of knot contact homology and knot 
DGA in R3) has been recently proposed by V. Shende et al. (see, e.g., [45, Section 4], [15, Section 6.6], [46, Section 6.5]). 
In this case, M = R

3 and the Legendrian � ⊂ ST ∗M is given by the unit conormal bundle �L := ST ∗
LR

3 associated with a 
link L ⊂ R

3. It is interesting that the support condition defining the subcategory Shc(R
3)�̃ ⊂ Shc(R

3) coincides with the 
constructibility condition in our Theorem 7.10, and some geometric arguments suggest that there is a relation between this 
sheaf category and knot contact homology (see [15, Section 6.6]). Whether this geometric relation can be used to prove the 
result of Theorem 7.10 is not clear to us at the moment: a priori, the equivalence of categories in Theorem 7.10 originates 
from a different direction. In fact, there are three approaches to knot contact homology:

(1) combinatorial knot contact homology,
(2) Legendrian contact homology of the pair �L ⊂ ST ∗

R
3,

(3) constructible sheaves on R3 with singular support in �̃L .

The papers [13,14] establish an equivalence between (1) and (2) by identifying the generators of the combinatorial knot 
DGA with Reeb cords and defining the differentials in terms of pseudoholomorphic disks. The geometric approach of [15,
45,46] relates (2) and (3) via the geometry of symplectic fillings. Our result, Theorem 7.10, establishes the relation between 
(1) and (3) by appealing to the classical description of perverse sheaves on the disk in terms of nearby and vanishing cycle 
functors [19] and using an algebraic ‘gluing’ construction (homotopy braid closure). It would be interesting to see whether 
these approaches actually ‘agree’; in particular, can one prove Theorem 7.10 using the approach of [15,45,46]?

2. Categorification of the link DG category. There seems to be a natural way to categorify the DG category ˜A , using 
the notion of ‘perverse schobers’ introduced in [28] (see also [29]). First, one can construct a (higher) category C of 
(∞, 2)-categories that includes the category dgCatk as an object (see [49,17]). In C , one can find an object A (n) such 
that the category of 2-representations of A (n) , i.e. an appropriately defined internal hom HomC (A (n), dgCatk), is equiva-
lent to the (higher) category of perverse schobers on the disk with n marked points. Then, there should exist a Bn-action 
on A (n) for all n ≥ 1 that would allow us to take the homotopy braid closure. The result should be an object in C (i.e., an 
(∞, 2)-category A), whose category HomC (A, dgCatk) of 2-representations is equivalent to a category of ‘perverse schobers 
on R3 singular along a link’.

3. Yang–Baxter operators related to coherent sheaves. Many interesting examples of braid group actions related to coherent 
sheaves have been constructed in the literature (see, e.g., [43,42,1] and references therein). It would be interesting to look at 
these examples in relation to the examples studied in the present paper and clarify the relations between the corresponding 
link invariants.
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