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RESUME

Dans cette Note, nous considérons I'analogue dans les corps de fonctions du probléme
de Lehmer sur la fonction d’Euler. Soit p(x) € Fq[x] et ¢(q, p(x)) la fonction d’Euler de
p(x) sur Fy[x], ot F; désigne un corps fini a q éléments. Nous montrons que ¢(q, p(x)) |
(q9es(P®) _ 1) s et seulement si (i) p(x) est irréductible, ou (ii) ¢ = 3 et p(x) est le produit
de deux polyndmes irréductibles non associés de degré 1, ou (iii) g =2 et p(x) est le
produit de tous les polynomes irréductibles de degré 1, ou le produit de tous les polyndmes
irréductibles de degrés 1 et 2, ou le produit de trois polyndomes irréductibles de degrés 1,
2 et 3, respectivement.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this paper, let Q, Z and N denote the field of rational numbers, the ring of rational integers and the set of
nonnegative integers, respectively. Let N* = N\ {0}. As usual, let ord, denote the normalized p-adic valuation of Qp.

Lehmer’s totient problem. Let ¢ be the Euler’s totient function. In [6], Lehmer discussed the equation

kon)=n—1, (M
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where k is an integer. In his pioneering paper [6], Lehmer showed that if n is a solution to (1), then n is a prime or the
product of seven or more distinct primes. One is tempted to believe that an integer n is a prime if and only if ¢(n) divides
n — 1. This problem has not been solved to this day. But some progress has been made in this direction. In the literature,
some authors call these composite numbers n satisfying equation (1) the Lehmer numbers. Lehmer’s totient problem is to
determine the set of Lehmer numbers. To the best of our knowledge, the current best result is due to Richard G.E. Pinch
(see [9]), which states that the number of prime factors of a Lehmer number n must be at least 15 and that there is no
Lehmer number less than 1030, For further results on this topic, we refer the reader to [1,2,4,5,7,10].

J. Schettler [11] generalizes the divisibility condition ¢(n)|(n — 1), constructs a reasonable notion of Lehmer numbers and
Carmichael numbers in a PID and gets some interesting results. Let R be a PID with the property: R/(r) is finite whenever
0 # r € R. Denote the sets of units, primes and (non-zero) zero divisors, in R, by U(R), P(R) and Z(R), respectively;
additionally, define

Lg:={re R\ ({0} UUR)UP(R)) : [UR/T)I|IZ(R/T)I}. (2)

Note that when R =7, Lz is the set of Lehmer numbers. An element of Lg is also called a Lehmer number of R. Let Fy be
a finite field with g elements. Then Fg[x] is a PID. Schettler obtains some properties of elements of Lg [y as follows.

Proposition 1.1 ([11], Theorems 5.1, 5.2, 5.3).

(1) Suppose f(x) € Lr,x1, p(x) € P(Fqlx]) and p(x)| f (x). Then deg(p(x))|deg(f (x)).
(2) Suppose f(x) € Ly, [x- Then f(x) has at least [log, (q + 1)] distinct prime factors.
(3) There exists a PID R such that Lg # 9 (e.g., f(x) =x(x+ 1) € Ly,[x)-

Our work is inspired by the above proposition; in this paper, our goal is to determine the set Ly, [x].

Euler’s totient function over Fy[x]. Let f(x) € Fy[x] with m =deg(f(x)) > 1. Put

D (f(x)) ={gx) € Fylx] | deg(g(x)) =m —1,(f(x), g(x) =1}.
The Euler’s totient function ¢(q, f(x)) of f(x) is defined as follows:

@@, fx) =1P(f X))

If f(x) € Fylx] is irreducible, then ¢(q, f(x)) = q9e8U®) — 1, It is easy to see that the functions ¢(q, f(x)) and ¢(n) have
the following similar properties.

Proposition 1.2.Let f(x) = p1(x)" --- pr(X)™* € Fy[x] of degree n > 1, where p1(x),..., pk(x) € P(Fq[x]) are non-associate,
deg(pi(x)) =njandr; > 1,1 <i < k. Then we have

k 1
(1) ¢@ fC)=q" 10 - 77);

i=1

(2) If g(x) € Fq[x] and (f (x), g(x)) = 1, then g(x)?@-f® =1 (mod f (x));
(3) Ife(q, f(x)I(@" — 1), thenri =1, forall1 <i<k.

Hence it is natural to consider the following Lehmer’s totient problem over Fq[x].
Determine f(x) € Fg[x] such that ¢(q, fFx)|(gies ) — 1),
Set

Lr, = {f(x) € Fg[x]\ {0} | deg(f () > 1, @(q. f(x))](q*E/™ —1)}.
By the definition (2), it is easy to see that

Li,x) = {f (%) € Fg[x]\ {0} | f(x) is reducible, (g, f(x))|(q*E/ ™ — 1)}

Hence Ly, = P(Fg[x]) U Lr,[x.
For ¢ =2, 3, Lv Hengfei [3] gave some polynomials f(x) € Ly [x as follows:

2,
3,

(*) =x(x+1)(x* + x+ 1), then (2, f(x)) =3, hence @2, f(x))|(2* — 1).
(%) =x(x+ 1), then ¢(3, f(x)) =4, hence (3, f(x))|(3% - 1).

(1) q
(2) q

-~
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In this paper, we give the necessary and sufficient conditions for f(x) € Ly,[x as follows.
Main theorem.

(1) Assume q > 4. Then Ly, [x = 9.
(2) Assume q = 3. Then L,y consists of the products of any 2 non-associate irreducibles of degree 1, i.e.

Ly ={ax(x+ 1), ax(x — 1), a(x + 1)(x — 1) e F3[x],a =1, 2}.

(3) Assume q = 2. Then Ly, [x) consists of the products of all irreducibles of degree 1, the products of all irreducibles of degree 1 and 2,
and the products of any 3 irreducibles one each of degree 1, 2, and 3, i.e.

L = XX+ 1D, X%+ DX +x+ 1D, X2 +x+ D3 +x+ 1),
G+ DE +x+DE +x+1),x6% +x+ D +x2+1),
x+1DE*+x+ 1D +x2+1) e Fax]}.

The proof is essentially to give the necessary and sufficient conditions for ¢(q, f(x))|(q4€8 ®) —1), which will be divided
into two cases, ¢ >3 and q = 2.

2. Properties of cyclotomic polynomials

Let n € N* and ¢, be a primitive n-th root of unity. The polynomial
o= [] &x—&d)
(G,m=1

is called the n-th cyclotomic polynomial. It is well known that ®,(x) is an irreducible polynomial of degree ¢(n) in Z[x]
and

X' —1=]]®a. (3)
din
Note that the polynomial factorization in (3) is complete. But it does not follow that the factorization
a”—l:l_[dDd(a), acZ (4)
din

is complete, since the integer ®;(a) may not be prime.

Definition 2.1. Suppose a > b > 0 are coprime integers. A prime divisor p of a" — b", n > 2, is called primitive if p {a* — b,
for any k < n. Otherwise, it is called algebraic.

It is well known that the following Bang-Zsigmondy’s Theorem provides the existence of a primitive prime factor.

Bang-Zsigmondy’s Theorem ([14]). Suppose a > b > 0 are coprime integers. Then for any natural number n > 1, there is a primitive
prime divisor p of a* — b" with the following exceptions:

a=2,b=1, and n=6; or

a+bis a power of two, and n=2.

It is clear that for any n, and d|n, that any prime p dividing ¢4(a) will be an algebraic divisor of (4), since p must divide
a? — 1 as ¢q(a) does. On the other hand, any primitive factor of a” — 1 will have to divide ®,(a). It is not true, however,
that every prime factor of ®,(a) is primitive.

Lemma 2.2 (3], Il C1, p. Ixviii). Let p be a prime and m € N* with (p, m) = 1. Suppose v € N* and a € Z. Then p|®mpv (a) if and only
if p|®m(a). Furthermore,

(1) if p|Pm(a) and mp" > 2, then ord, (Pmpv (@) = 1;
(2) if p|®m(a) and mp¥ =2,ie,p=2,m=v =1, then

ordy (®3(a)) =ordy(a+1) > 1.
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Lemma 2.3. Let p be a prime and n € N*. Suppose n = p¥m with v = ord, (n). Then p|®y(a) for some a € Z if and only if m|(p — 1).
Proof. It is obvious from Lemma 2.2 and ([13], Lemmas 2.9, 2.10). O
Corollary 2.4. Let p be a prime and a € Z, v € N. Then p|®,v (a) if and only if p|(a — 1).

Corollary 2.5. Let m > n be positive integers. For any a € Z, we obtain that (®,(a), ®n(a)) =1 or (Py(a), Pm(a)) is a prime.
Furthermore, if (®,,(a), ®m,(a)) = p is a prime, then m = pVn for some v > 1.

Lemma 2.6. Leta,m € N* and a > 2. Then | (a)| =1ifand only ifm=1,a = 2.

Proof. By the formula ®n(a)= [] (a— ;,{1), we know that |a — ;,{',| > 1 for all a > 2 and m > 2, hence |9, (a)| > 1. On
(J.m=1
the other hand, ®1(x) =x — 1. Therefore ®;(a) =1 if and only if m=1,a=2. O

To end this section, we recall an estimate for ®;,(a).
Lemma 2.7 ([12], Theorem 5). For any integersn > 2 and a > 2, we have

%a‘”(") < ®dp(a) <2-a*™,

3. Main results

Let the notation be the same as in §1 and §2.

S S
Proposition 3.1. Let a,n € N* and a > 3, n > 2. Assume s > 2 and ey, ez, ..., es € N* with " e; =n. Then [] (@ — 1)|(@" — 1) if

i=1 i=1
and only if

(1)a=3,n=s=2,e1=e3=1,0r
(2)a=3,n=s=4,e1=e3=e3=e4=1.

S
Proof. The sufficiency is trivial. It is sufficient to show the necessity. Suppose [](a® — 1)|(a" — 1). First, we have
i=1

1 @4(%) [T ®a(®)
x"—1 deT deT P(x)
5 TT % ®  G-DFT- [ o0 QW ©)
‘l_ll(xei — 1) d'eT’ d'eT”
i=
where T={d > 1]|d|n, dfe;, 1 <i<s}, P(x) = [] ®4(x) and Q(x) = [] ®g(x) for some index set T’, and T ={d' €
deT d'eT’
T |d > 2).
We have

(i) (P(x), Q(x)) =1 and deg(P(x)) = deg(Q (x));
(ii) for any d’ € T/, we have
d'|ej for some 1 <i <s, and (&g (x), Pg(x)) =1for alld e T;

(iii) for any d € T and d’ € T, we have d{d’;
(iv) for any d € T and d, d, € T’ such that

(Pg(a), g (@) # 1 and (Pg(a), Pgy(a)) # 1.

Then (®4(a), Py, (@) = (Py(a), Dy, (a)) = p for some prime p and d = p''d] = p"2d,, for some v1, v € N*. Furthermore,
ord, (®q(a)) =1 except d =2,d} =d, = 1.

The statements (i), (ii) and (iii) are obvious. We only prove (iv). In fact, by Corollary 2.5, there exist primes p; and p»
such that (®4(a), <1>d/] (a)) = p1 and (Pq4(a), q)d’z (a)) = pa. If p1 # pa, then by (iii) and Corollary 2.5, we have d = pq] pgzd”
for some ry, 15, d” € N* with (p1, p2d”) = (p2, p1d”) = 1. By Lemma 2.3, we have p3?d”|(p1 — 1) and p}'d”|(p2 — 1). This is
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a contradiction. Hence we obtain (®4(a), q)dﬁ (@) = (®q(a), dbd/z (a)) = p for some prime p. From (iii) and Corollary 2.5, we
have d = p¥1d} = p"2d, for some vq, vy € N*. By Lemma 2.2, we have ord, (®4(a)) =1 except d =2,d} =d), = 1. Thus we
complete the proof of (iv).

By assumption, we have

D
a’—1 _ dl;[T 4@ _ P(a) cN*
[[1 @ -1 @I @ Q@

By assumption a > 3, then either a — 1 = 2" or there exists an odd prime p such that p"||(a — 1) for some r € N*. Then
2'6=D|P(a) or p"S=V|P(a). Ifa—1=2", then

1, r>2,

ordy(Py(a)) =ordy(a+ 1) =ord (2" +2) = { 5 =1

Case 1 Assume p=2 and r =1, i.e, a = 3. Since 2|Ty for some d € T, d is even, so is n even.
(Q)If 2¢ T, by Lemma 2.2 and Corollary 2.5, there exist positive integers 2 < j; < j» <--- < js—1 such that
201,202 201 €T, and ordy(®,;,(3) =1, 1<k<s—1.
(b)If 2 €T, then eq, ..., es are odd, hence s is even.
If s >4, then 2,22,...,252 ¢ T and
ord(P2(3)) =2, orda(Px(3)) =1, 2<k<s—-2.
Case 2 Assume p is odd or p=2,a—1=2",r > 2. By Lemma 2.2 and Corollary 2.5, there exist positive integers 1 <i; <
i< < ir(5_1) such that
pil,piz,...,pif<5*1> eT, and ordp(tbp,-k @)y=1,1<k<r(s—1).
We set

{2}, ifp=2,a=3,2€T,s=2,
(2,22,...,2572), ifp=2,a=3,2¢eT,s>4,
(201,202 2is1) ifp=2,a=3,2¢T,

{p'1, pi2, ..., prs-n}, ifpis odd orp=2,a—1=2",r> 2.

If T # @, we define a map f:T” — T as follows. By Lemma 2.6, for any d’ € T”, we have |®4 (a)| # 1. Choose a
prime factor of ®4 (a), say p’|®4 (a), there exists d = p’Vd’ € T for some v > 1. Define f(d’) =d. By Lemma 2.2, we have
ordy (®g(a)) = 1. By (iv), the map f is injective and f(d") ¢ A. For any d’ € T”, we have d' > 2 and p’|®q (a), and if p’ =2,
then 2|d’. Hence

deg(® s (%) = @(p'"d") > p(d') = deg(®¢ (%)), d' e T".
On the other hand, we always have
Y deg(®m(x) =5 — 1.
meA
Hence the equality deg(P(x)) = deg(Q (x)) implies that T” =@ and
Z deg(®(x))=s—1landa—1=p".
meA

Note that T” = ¢ implies that

eilnand (ej,ej) =1, 1 <i#j<s.

It is easy to verify that )  deg(®m(x))=s—1ifand only if (i)a=3,p=2,5=2,e1=ex=1,0r (ii)a=3, p=2,s=4,
meA
e1 = ey =e3 = e4 = 1. This completes the proof. O

S S

Lemma 3.2. Let n € N* and n > 2. Assume s > 2 and ey, e3,...,es € N* with " e; =n. If [] (2% — 1)|(2" — 1), then e;|n for all
i=1 i=1

1<i<s,and (e1,...,e5)=1.
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N
Proof. The assumption [] (2% —1)|(2" — 1) implies that
i=1

I L ST ]
T 292 Q@)

£3
S N ’
41_[1(281. —-D d'eT”

1=

where the sets T and T” are defined by the formula (5). Suppose that there exists e;, for some 1 <ig <s such that e;, {n.
Hence there is a prime p and r € N* such that ple;, and p" {n. Thus p" € T”. By Lemma 2.6, we have |®pr(2)| # 1. Let
[ be a prime such that [|®,r(2). Then there exists d € T such that I|®4(2). From (iii) of the proof of Proposition 3.1 and
Corollary 2.5, we have d =1V p" for some v € N*. Therefore [Y p"|n. This contradicts the fact p" {n. Hence we have e;|n for all
1<i<s.
N
Assume (eq,...,es)=d>1.Put a=24, e; = eid, 1<i<s, n=n'd Then a >4 and n’ = }_e]. By Proposition 3.1, we

i=1
S , , s S
have [](@% — 1)t (@ —1), hence [](2% — 1)t (2" — 1). This contradicts the assumption [] (2% — 1)|(2" — 1). Therefore we

i=1 i=1 i=1
have (e1,...,es)=1. O

Lemma 3.3. Let n € N* and h(n) = # where o (n) = de d. Then we have h(n) < 1.28n%,for alln € N*,

Proof. Let p >5 be a prime and a € N*, It is easy to see that h(—’f;) < 1. For p=2, 3, we get
p4
<1.262, ifa=1,
h2% | <1.238, ifa=2,
24 <1.115, ifa=3,
<1, ifa>4

and

h3% [ <1.014, ifa=1,
3% <1, if a>2.

Hence we have h(n) < 1.262 x 1.014n7 < 1.28n%, forallneN*. 0O

Lemma 3.4. Let n € N*, Set

0.59, if orda(n) =1,
0.70, if ordy(n) =2,
0.84, if ordy(n) =3,
1, if ordy(n) > 4, or ordy(n) =0.

c(n) =

Then ¢(n) > c(n)n%,for any integern > 2.

Proof. If p is an odd prime, then ¢(p?) > pBTa for any a € N*. On the other hand, we have

>0.59, if ordy(n) =1,

©2% | >0.70, if ordy(n) =2,
2% > 0.84, if ordy(n)=3,
>1, if ordy(n) > 4.

Hence ¢(n) > c(n)n%, for any integer n>2. O

S
Proposition 3.5. Letn > s> 2, e < ey < --- < es be positive integers such that )_ e; =n. Foreach d|n, d <n, let ug = |{e; | e; =d,
i=1

S
1 <i <s}|. Assume that u; <2 and ug < 2‘iT_lforanyd >2.Then [[2% — 1D|(2" — 1) ifandonly if 1) n=2,s=2,e1=e2=1;

i=1
or(2Q)n=4,s=3,e1=ey;=1,e3=2;0r(3)n=6,s=3,e1=1,e3=2,e3=3.
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Proof. The sufficiency is trivial. It is sufficient to show the necessity. Set
2" -1 .
R = 57 E N .
1@ —1)
i=1
(1) Assume 2 <n <6. It is easy to show the necessity by Lemma 3.2.

(2) Assume n > 7. The primitive part M of 2" — 1 can not be reduced with the denominator, so R > M. By Lemma 2.7,
we have

)
R>M > (I)n—(z) > 2 )
-~ n T 2n
On the other hand, we have

"1 L ;
— —€iy— _ 27 €y~
R="—3 [Ja-2""<[Ja-2"""

i=1 i=1

By assumption, uq <2, up; <1, hence

logR < 2log2 + S(n)log3 Y>3 log(l —27¢)
< log4 + B(n)log3 + Ze >3 26, T
<logd +8(m10g5 + g, 3<d<n 55
< logd + s(n)log3 + Zdln 3<d<n 1
=log4 + S(n)log‘% — 5(”) + h(n),
1, ifn=0 (mod 2),

0, ifn=1 (mod 2).
By Lemmas 3.3, 3.4, we have

where §(n) = {

logR > ¢(n)log2 — log2n > c(n)log?2 - n% — log2n,

smy 1
logR < 10g4+6(n)10g— -1- 5 5 +1 28n4

It is easy to calculate that the inequality

4 sy 1
log4+8(n)log— —-1- ~ ~n —H 28n4 > c(n)log2 - n4 —log2n

holds for n > 7 if and only if

ne{7,8,9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 24, 26, 30, 34, 38, 42, 46, 50, 54}.
Hence the inequality

) 1
log4+6(n)log— —-1- % — —+h(®) > ¢(n)log2 — log2n

holds for n > 7 if and only if n € D = {8, 9, 10, 12, 14, 18, 20, 24, 30}. By Lemma 3.2, we can straightly calculate that there is
no n € D meeting the assumptions. This completes the proof. O

We are now in the position to prove the main theorem.

Proof of the main theorem. The sufficiency is trivial. We need only to show the necessity. We may assume that p(x) € Fg[x]
is monic and reducible and of degree n > 1. Let

pX)=p1(X)" - pr()™

be the standard decomposition, where p;(x) is monic and irreducible and of degree e; > 1, r; > 1, 1 <i <k. By (3) of
Proposition 1.2, we have r{ =ry =--- =1, = 1. Hence

k k
P =pi1(X)---pe(x), n= e, and []@ —DIg" - 1.

i=1 i=1
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If ¢ > 3, then, by Proposition 3.1, we have =3, k=2,e1=e;=1,0r =3, k=4, e; = ey =e3 =e4 = 1. But there are
only three distinct monic irreducible polynomials of degree one in [F3[x], hence p(x) is the product of any 2 distinct monic
irreducibles of degree 1. Hence

Ly = {ax(x + 1), ax(x — 1), a(x + 1)(x — 1) e F3[x],a =1, 2}.

If ¢ =2, then the e]s satisfy the assumptions of Proposition 3.5, hence we have (i) n=2,k=2,e; =ex;=1; or (ii) n=4,
k=3,e1=ey=1,e3=2; or (ili) n=6,k=3,e;1 =1,e; =2,e3 = 3. On the other hand, the irreducibles of degree 1 are x
and x+1; x> +x+1 is the unique irreducible of degree 2; the irreducibles of degree 3 are x> +x+1 and x> +x2 + 1. Hence

Ly = XX+ 1), xx+ 1D +x+1), (% +x+ 13 +x+ 1),
E+DEE+x+DEE+x+ 1D, +x+ D +x2+1),
E+DE+x+ 1D +x2+1) e Fy[x]}.

This completes the proof. O
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