Dans cette note, nous démontrons un théorème de semi-continuité pour une classe de seuils log-canoniques pondérés et obtenons des résultats connexes pour des restrictions de fonctions plurisubharmoniques à des sous-espaces k-dimensionnels et pour des faisceaux d'idéaux multiplicateurs.
In this note, we prove a semicontinuity theorem for a class of weighted log canonical thresholds, and obtain some related results for restrictions of plurisubharmonic functions to k-dimensional subspaces and for multiplier ideal sheaves.
Accepté le :
Publié le :
@article{CRMATH_2017__355_1_34_0, author = {Hiep, Pham Hoang}, title = {Continuity properties of certain weighted log canonical thresholds}, journal = {Comptes Rendus. Math\'ematique}, pages = {34--39}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.005}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2016.11.005/} }
TY - JOUR AU - Hiep, Pham Hoang TI - Continuity properties of certain weighted log canonical thresholds JO - Comptes Rendus. Mathématique PY - 2017 SP - 34 EP - 39 VL - 355 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.11.005/ DO - 10.1016/j.crma.2016.11.005 LA - en ID - CRMATH_2017__355_1_34_0 ER -
%0 Journal Article %A Hiep, Pham Hoang %T Continuity properties of certain weighted log canonical thresholds %J Comptes Rendus. Mathématique %D 2017 %P 34-39 %V 355 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2016.11.005/ %R 10.1016/j.crma.2016.11.005 %G en %F CRMATH_2017__355_1_34_0
Hiep, Pham Hoang. Continuity properties of certain weighted log canonical thresholds. Comptes Rendus. Mathématique, Tome 355 (2017) no. 1, pp. 34-39. doi : 10.1016/j.crma.2016.11.005. https://www.numdam.org/articles/10.1016/j.crma.2016.11.005/
[1] The openness conjecture for plurisubharmonic functions, Complex Geometry and Dynamics: The Abel Symposium, 2013
[2] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013), pp. 149-158
[3] Monge–Ampère operators, Lelong numbers and intersection theory (Ancona, V.; Silva, A., eds.), Complex Analysis and Geometry, University Series in Mathematics, Plenum Press, New York, 1993
[4] A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993), pp. 323-374
[5] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/demailly/books.html
[6] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9
[7] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001), pp. 525-556
[8] A proof of Demailly's strong openness conjecture, Ann. of Math. (2), Volume 182 (2015), pp. 605-616
[9] Multiplier ideal sheaves, jumping numbers, and the restriction formula | arXiv
[10] The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 283-288
[11] Log canonical thresholds and Monge–Ampère masses | arXiv
[12] Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math., Volume 60 (1994), pp. 173-197
[13] Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. (2), Volume 132 (1990), pp. 549-596
[14] On the extension of
[15] Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2), Volume 152 (2000), p. 277329
[16] Sous-ensembles analytiques d'ordre fini ou infini dans
Cité par Sources :