Soit
Let
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_683_0, author = {Clark, Pete L. and Pollack, Paul}, title = {The truth about torsion in the {CM} case}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.05.004}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.05.004/} }
TY - JOUR AU - Clark, Pete L. AU - Pollack, Paul TI - The truth about torsion in the CM case JO - Comptes Rendus. Mathématique PY - 2015 SP - 683 EP - 688 VL - 353 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.05.004/ DO - 10.1016/j.crma.2015.05.004 LA - en ID - CRMATH_2015__353_8_683_0 ER -
Clark, Pete L.; Pollack, Paul. The truth about torsion in the CM case. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 683-688. doi : 10.1016/j.crma.2015.05.004. https://www.numdam.org/articles/10.1016/j.crma.2015.05.004/
[1] Torsion points on abelian varieties with complex multiplication, Kitasakado, 1994, World Sci. Publ., River Edge, NJ, USA (1995), pp. 1-22
[2] Remarks on the size of
[3] Torsion points on CM elliptic curves over real number fields (submitted for publication) | arXiv
[4] Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory, Volume 130 (2010), pp. 1241-1250
[5] Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory, Volume 9 (2013), pp. 447-479
[6] Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, 2000
[7] Multiplicative Number Theory, Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000
[8] Über die reellen Nullstellen der Dirichletschen L-Reihen, Corrigendum, Acta Arith., Volume 22 (1973), pp. 391-421
[9] Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris, Ser. I, Volume 329 (1999) no. 2, pp. 97-100
[10] An Introduction to the Theory of Numbers, Oxford University Press, Oxford, UK, 2008
[11] On Siegel's zero, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 2 (1975), pp. 571-583
[12] Elementary methods in the theory of L-functions. II. On the greatest real zero of a real L-function, Acta Arith., Volume 31 (1976), pp. 273-289
[13] A generalization of Mertens' theorem, J. Ramanujan Math. Soc., Volume 14 (1999), pp. 1-19
[14] Points of finite order on abelian varieties, p-Adic Methods in Number Theory and Algebraic Geometry, Contemp. Math., vol. 133, Amer. Math. Soc., Providence, RI, USA, 1992, pp. 175-193
[15] Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, 1994
- NOMBRE DE PETITS POINTS SUR UNE VARIÉTÉ ABÉLIENNE, Journal of the Institute of Mathematics of Jussieu (2025), p. 1 | DOI:10.1017/s1474748024000549
- Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves, Journal de théorie des nombres de Bordeaux, Volume 36 (2024) no. 2, p. 661 | DOI:10.5802/jtnb.1292
- The least degree of a CM point on a modular curve, Journal of the London Mathematical Society, Volume 105 (2022) no. 2, p. 825 | DOI:10.1112/jlms.12518
- Acyclotomy of torsion in the CM case, The Ramanujan Journal, Volume 55 (2021) no. 3, p. 1015 | DOI:10.1007/s11139-020-00271-0
- Torsion points and isogenies on CM elliptic curves, Journal of the London Mathematical Society, Volume 102 (2020) no. 2, p. 580 | DOI:10.1112/jlms.12329
- Torsion points and Galois representations on CM elliptic curves, Pacific Journal of Mathematics, Volume 305 (2020) no. 1, p. 43 | DOI:10.2140/pjm.2020.305.43
- Pursuing polynomial bounds on torsion, Israel Journal of Mathematics, Volume 227 (2018) no. 2, p. 889 | DOI:10.1007/s11856-018-1751-8
- Typically bounding torsion, Journal of Number Theory, Volume 192 (2018), p. 150 | DOI:10.1016/j.jnt.2018.04.005
- Torsion des variétés abéliennes CM, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 7, p. 2741 | DOI:10.1090/proc/13885
- Anatomy of torsion in the CM case, Mathematische Zeitschrift, Volume 285 (2017) no. 3-4, p. 795 | DOI:10.1007/s00209-016-1727-5
- The truth about torsion in the CM case, II, The Quarterly Journal of Mathematics, Volume 68 (2017) no. 4, p. 1313 | DOI:10.1093/qmath/hax024
- Torsion Subgroups of CM Elliptic Curves over Odd Degree Number Fields:, International Mathematics Research Notices (2016), p. rnw163 | DOI:10.1093/imrn/rnw163
- Numbers Divisible by a Large Shifted Prime and Large Torsion Subgroups of CM Elliptic Curves, International Mathematics Research Notices (2016), p. rnw173 | DOI:10.1093/imrn/rnw173
Cité par 13 documents. Sources : Crossref