Probability theory
A central limit theorem for fields of martingale differences
[Théorème limite centrale pour des champs de différences de martingale]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 12, pp. 1159-1163.

Le théorème limite centrale pour un champ aléatoire fTi_, i_Zd, de différences d'une martingale est démontré. Le résultat est connu pour les champs aléatoires de Bernoulli ; ici, l'ergodicité d'un seul générateur de l'action Ti_ est supposée.

We prove a central limit theorem for stationary random fields of martingale differences fTi_, i_Zd, where Ti_ is a Zd action and the martingale is given by a commuting filtration. The result has been known for Bernoulli random fields; here only ergodicity of one of commuting transformations generating the Zd action is supposed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.09.017
Volný, Dalibor 1

1 Laboratoire de mathématiques Raphaël-Salem, UMR 6085, Université de Rouen, France
@article{CRMATH_2015__353_12_1159_0,
     author = {Voln\'y, Dalibor},
     title = {A central limit theorem for fields of martingale differences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1159--1163},
     publisher = {Elsevier},
     volume = {353},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crma.2015.09.017},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/}
}
TY  - JOUR
AU  - Volný, Dalibor
TI  - A central limit theorem for fields of martingale differences
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 1159
EP  - 1163
VL  - 353
IS  - 12
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/
DO  - 10.1016/j.crma.2015.09.017
LA  - en
ID  - CRMATH_2015__353_12_1159_0
ER  - 
%0 Journal Article
%A Volný, Dalibor
%T A central limit theorem for fields of martingale differences
%J Comptes Rendus. Mathématique
%D 2015
%P 1159-1163
%V 353
%N 12
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/
%R 10.1016/j.crma.2015.09.017
%G en
%F CRMATH_2015__353_12_1159_0
Volný, Dalibor. A central limit theorem for fields of martingale differences. Comptes Rendus. Mathématique, Tome 353 (2015) no. 12, pp. 1159-1163. doi : 10.1016/j.crma.2015.09.017. https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/

[1] Basu, A.K.; Dorea, C.C.Y. On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hung., Volume 33 (1979) no. 3–4, pp. 307-316

[2] Biermé, H.; Durieu, O. Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 5963-5989

[3] Billingsley, P. On the Lindeberg–Lévy theorem for martingales, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 788-792

[4] Cornfeld, I.P.; Fomin, S.V.; Sinai, Ya.G. Ergodic Theory, Springer-Verlag, Berlin, 1982

[5] El Machkouri, M.; Volný, D.; Wu, W.B. A central limit theorem for stationary random fields, Stoch. Process. Appl., Volume 123 (2013) no. 1, pp. 1-14

[6] Dedecker, J. A central limit theorem for stationary random fields, Probab. Theory Relat. Fields, Volume 110 (1998), pp. 397-426

[7] Gordin, M.I. The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, Volume 188 (1969), pp. 739-741

[8] Gordin, M.I. Martingale-coboundary representation for a class of random fields, J. Math. Sci., Volume 163 (2009) no. 4, pp. 363-374 | DOI

[9] Hall, P.; Heyde, C. Martingale Limit Theory and Its Application, Academic Press, New York, 1980

[10] Ibragimov, I.A. A central limit theorem for a class of dependent random variables, Theory Probab. Appl., Volume 8 (1963), pp. 83-89

[11] Khosnevisan, D. Multiparameter Processes, an Introduction to Random Fields, Springer-Verlag, New York, 2002

[12] Klicnarová, J.; Volný, D.; Wang, Y. Limit theorems for weighted Bernoulli random fields under Hannan's condition (submitted for publication) | arXiv

[13] McLeish, D.L. Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628

[14] Morkvenas, R. The invariance principle for martingales in the plane, Liet. Mat. Rink., Volume 24 (1984) no. 4, pp. 127-132

[15] Nahapetian, B. Billingsley–Ibragimov theorem for martingale-difference random fields and it applications to some models of classical statistical physics, C. R. Acad. Sci. Paris, Ser. I, Volume 320 (1995) no. 12, pp. 1539-1544

[16] Petersen, K. Ergodic Theory, Cambridge University Press, Cambridge, UK, 1990

[17] Poghosyan, S.; Roelly, S. Invariance principle for martingale-difference random fields, Stat. Probab. Lett., Volume 38 (1998) no. 3, pp. 235-245

[18] Volný, D.; Wang, Y. An invariance principle for stationary random fields under Hannan's condition, Stoch. Process. Appl., Volume 124 (2014), pp. 4012-4029

[19] D. Volný, in preparation.

[20] Wang, Y. An invariance principle for fractional Brownian sheets, J. Theor. Probab., Volume 27 (2014) no. 4, pp. 1124-1139

[21] Wang, Y.; Woodroofe, M. A new condition on invariance principles for stationary random fields, Stat. Sin., Volume 23 (2013) no. 4, pp. 1673-1696

  • Blanchard, Gilles; Carpentier, Alexandra; Zadorozhnyi, Oleksandr Moment inequalities for sums of weakly dependent random fields, Bernoulli, Volume 30 (2024) no. 3 | DOI:10.3150/23-bej1682
  • Reding, Lucas; Zhang, Na On the Quenched Functional Central Limit Theorem for Stationary Random Fields under Projective Criteria, Latin American Journal of Probability and Mathematical Statistics, Volume 21 (2024) no. 2, p. 1215 | DOI:10.30757/alea.v21-47
  • Giraudo, Davide Deviation inequality for Banach-valued orthomartingales, Stochastic Processes and their Applications, Volume 175 (2024), p. 104391 | DOI:10.1016/j.spa.2024.104391
  • Giraudo, Davide An exponential inequality for orthomartingale difference random fields and some applications, Annales Henri Lebesgue, Volume 6 (2023), p. 575 | DOI:10.5802/ahl.172
  • Merlevède, Florence; Peligrad, Magda Functional Central Limit Theorem via Nonstationary Projective Conditions, High Dimensional Probability IX, Volume 80 (2023), p. 229 | DOI:10.1007/978-3-031-26979-0_10
  • Lin, Han-Mai; Merlevède, Florence; Volný, Dalibor On the central limit theorem for stationary random fields under L1-projective condition, Electronic Communications in Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ecp486
  • Giraudo, Davide Bound on the maximal function associated to the law of the iterated logarithms for Bernoulli random fields, Stochastics, Volume 94 (2022) no. 2, p. 248 | DOI:10.1080/17442508.2021.1920942
  • Lin, Han-Mai On the weak invariance principle for non-adapted stationary random fields under projective criteria, Stochastics and Dynamics, Volume 22 (2022) no. 05 | DOI:10.1142/s0219493722500137
  • Giraudo, Davide Maximal function associated to the bounded law of the iterated logarithms via orthomartingale approximation, Journal of Mathematical Analysis and Applications, Volume 496 (2021) no. 1, p. 124792 | DOI:10.1016/j.jmaa.2020.124792
  • Björklund, Michael; Gorodnik, Alexander Central limit theorems for group actions which are exponentially mixing of all orders, Journal d'Analyse Mathématique, Volume 141 (2020) no. 2, p. 457 | DOI:10.1007/s11854-020-0106-7
  • Peligrad, Magda; Volný, Dalibor Quenched Invariance Principles for Orthomartingale-Like Sequences, Journal of Theoretical Probability, Volume 33 (2020) no. 3, p. 1238 | DOI:10.1007/s10959-019-00914-z
  • Zhang, Na; Reding, Lucas; Peligrad, Magda On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria, Journal of Theoretical Probability, Volume 33 (2020) no. 4, p. 2351 | DOI:10.1007/s10959-019-00943-8
  • Peligrad, Magda; Zhang, Na Central limit theorem for Fourier transform and periodogram of random fields, Bernoulli, Volume 25 (2019) no. 1 | DOI:10.3150/17-bej995
  • Volný, Dalibor On limit theorems for fields of martingale differences, Stochastic Processes and their Applications, Volume 129 (2019) no. 3, p. 841 | DOI:10.1016/j.spa.2018.03.021
  • Magda, Peligrad; Zhang, Na Martingale approximations for random fields, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp128
  • Peligrad, Magda; Zhang, Na On the normal approximation for random fields via martingale methods, Stochastic Processes and their Applications, Volume 128 (2018) no. 4, p. 1333 | DOI:10.1016/j.spa.2017.07.012
  • Volný, Dalibor Martingale-coboundary representation for stationary random fields, Stochastics and Dynamics, Volume 18 (2018) no. 02, p. 1850011 | DOI:10.1142/s0219493718500119
  • Giraudo, Davide Invariance principle via orthomartingale approximation, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850043 | DOI:10.1142/s0219493718500430
  • Cuny, C.; Dedecker, J.; Volný, D. A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation, Journal of Mathematical Sciences, Volume 219 (2016) no. 5, p. 765 | DOI:10.1007/s10958-016-3145-y
  • Klicnarová, Jana; Volný, Dalibor; Wang, Yizao Limit theorems for weighted Bernoulli random fields under Hannan’s condition, Stochastic Processes and their Applications, Volume 126 (2016) no. 6, p. 1819 | DOI:10.1016/j.spa.2015.12.006

Cité par 20 documents. Sources : Crossref