Le théorème limite centrale pour un champ aléatoire , , de différences d'une martingale est démontré. Le résultat est connu pour les champs aléatoires de Bernoulli ; ici, l'ergodicité d'un seul générateur de l'action est supposée.
We prove a central limit theorem for stationary random fields of martingale differences , , where is a action and the martingale is given by a commuting filtration. The result has been known for Bernoulli random fields; here only ergodicity of one of commuting transformations generating the action is supposed.
Accepté le :
Publié le :
@article{CRMATH_2015__353_12_1159_0, author = {Voln\'y, Dalibor}, title = {A central limit theorem for fields of martingale differences}, journal = {Comptes Rendus. Math\'ematique}, pages = {1159--1163}, publisher = {Elsevier}, volume = {353}, number = {12}, year = {2015}, doi = {10.1016/j.crma.2015.09.017}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2015.09.017/} }
TY - JOUR AU - Volný, Dalibor TI - A central limit theorem for fields of martingale differences JO - Comptes Rendus. Mathématique PY - 2015 SP - 1159 EP - 1163 VL - 353 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2015.09.017/ DO - 10.1016/j.crma.2015.09.017 LA - en ID - CRMATH_2015__353_12_1159_0 ER -
%0 Journal Article %A Volný, Dalibor %T A central limit theorem for fields of martingale differences %J Comptes Rendus. Mathématique %D 2015 %P 1159-1163 %V 353 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2015.09.017/ %R 10.1016/j.crma.2015.09.017 %G en %F CRMATH_2015__353_12_1159_0
Volný, Dalibor. A central limit theorem for fields of martingale differences. Comptes Rendus. Mathématique, Tome 353 (2015) no. 12, pp. 1159-1163. doi : 10.1016/j.crma.2015.09.017. http://www.numdam.org/articles/10.1016/j.crma.2015.09.017/
[1] On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hung., Volume 33 (1979) no. 3–4, pp. 307-316
[2] Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 5963-5989
[3] On the Lindeberg–Lévy theorem for martingales, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 788-792
[4] Ergodic Theory, Springer-Verlag, Berlin, 1982
[5] A central limit theorem for stationary random fields, Stoch. Process. Appl., Volume 123 (2013) no. 1, pp. 1-14
[6] A central limit theorem for stationary random fields, Probab. Theory Relat. Fields, Volume 110 (1998), pp. 397-426
[7] The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, Volume 188 (1969), pp. 739-741
[8] Martingale-coboundary representation for a class of random fields, J. Math. Sci., Volume 163 (2009) no. 4, pp. 363-374 | DOI
[9] Martingale Limit Theory and Its Application, Academic Press, New York, 1980
[10] A central limit theorem for a class of dependent random variables, Theory Probab. Appl., Volume 8 (1963), pp. 83-89
[11] Multiparameter Processes, an Introduction to Random Fields, Springer-Verlag, New York, 2002
[12] Limit theorems for weighted Bernoulli random fields under Hannan's condition (submitted for publication) | arXiv
[13] Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628
[14] The invariance principle for martingales in the plane, Liet. Mat. Rink., Volume 24 (1984) no. 4, pp. 127-132
[15] Billingsley–Ibragimov theorem for martingale-difference random fields and it applications to some models of classical statistical physics, C. R. Acad. Sci. Paris, Ser. I, Volume 320 (1995) no. 12, pp. 1539-1544
[16] Ergodic Theory, Cambridge University Press, Cambridge, UK, 1990
[17] Invariance principle for martingale-difference random fields, Stat. Probab. Lett., Volume 38 (1998) no. 3, pp. 235-245
[18] An invariance principle for stationary random fields under Hannan's condition, Stoch. Process. Appl., Volume 124 (2014), pp. 4012-4029
[19] D. Volný, in preparation.
[20] An invariance principle for fractional Brownian sheets, J. Theor. Probab., Volume 27 (2014) no. 4, pp. 1124-1139
[21] A new condition on invariance principles for stationary random fields, Stat. Sin., Volume 23 (2013) no. 4, pp. 1673-1696
Cité par Sources :