Le théorème limite centrale pour un champ aléatoire
We prove a central limit theorem for stationary random fields of martingale differences
Accepté le :
Publié le :
@article{CRMATH_2015__353_12_1159_0, author = {Voln\'y, Dalibor}, title = {A central limit theorem for fields of martingale differences}, journal = {Comptes Rendus. Math\'ematique}, pages = {1159--1163}, publisher = {Elsevier}, volume = {353}, number = {12}, year = {2015}, doi = {10.1016/j.crma.2015.09.017}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/} }
TY - JOUR AU - Volný, Dalibor TI - A central limit theorem for fields of martingale differences JO - Comptes Rendus. Mathématique PY - 2015 SP - 1159 EP - 1163 VL - 353 IS - 12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/ DO - 10.1016/j.crma.2015.09.017 LA - en ID - CRMATH_2015__353_12_1159_0 ER -
%0 Journal Article %A Volný, Dalibor %T A central limit theorem for fields of martingale differences %J Comptes Rendus. Mathématique %D 2015 %P 1159-1163 %V 353 %N 12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/ %R 10.1016/j.crma.2015.09.017 %G en %F CRMATH_2015__353_12_1159_0
Volný, Dalibor. A central limit theorem for fields of martingale differences. Comptes Rendus. Mathématique, Tome 353 (2015) no. 12, pp. 1159-1163. doi : 10.1016/j.crma.2015.09.017. https://www.numdam.org/articles/10.1016/j.crma.2015.09.017/
[1] On functional central limit theorem for stationary martingale random fields, Acta Math. Acad. Sci. Hung., Volume 33 (1979) no. 3–4, pp. 307-316
[2] Invariance principles for self-similar set-indexed random fields, Trans. Amer. Math. Soc., Volume 366 (2014), pp. 5963-5989
[3] On the Lindeberg–Lévy theorem for martingales, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 788-792
[4] Ergodic Theory, Springer-Verlag, Berlin, 1982
[5] A central limit theorem for stationary random fields, Stoch. Process. Appl., Volume 123 (2013) no. 1, pp. 1-14
[6] A central limit theorem for stationary random fields, Probab. Theory Relat. Fields, Volume 110 (1998), pp. 397-426
[7] The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, Volume 188 (1969), pp. 739-741
[8] Martingale-coboundary representation for a class of random fields, J. Math. Sci., Volume 163 (2009) no. 4, pp. 363-374 | DOI
[9] Martingale Limit Theory and Its Application, Academic Press, New York, 1980
[10] A central limit theorem for a class of dependent random variables, Theory Probab. Appl., Volume 8 (1963), pp. 83-89
[11] Multiparameter Processes, an Introduction to Random Fields, Springer-Verlag, New York, 2002
[12] Limit theorems for weighted Bernoulli random fields under Hannan's condition (submitted for publication) | arXiv
[13] Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628
[14] The invariance principle for martingales in the plane, Liet. Mat. Rink., Volume 24 (1984) no. 4, pp. 127-132
[15] Billingsley–Ibragimov theorem for martingale-difference random fields and it applications to some models of classical statistical physics, C. R. Acad. Sci. Paris, Ser. I, Volume 320 (1995) no. 12, pp. 1539-1544
[16] Ergodic Theory, Cambridge University Press, Cambridge, UK, 1990
[17] Invariance principle for martingale-difference random fields, Stat. Probab. Lett., Volume 38 (1998) no. 3, pp. 235-245
[18] An invariance principle for stationary random fields under Hannan's condition, Stoch. Process. Appl., Volume 124 (2014), pp. 4012-4029
[19] D. Volný, in preparation.
[20] An invariance principle for fractional Brownian sheets, J. Theor. Probab., Volume 27 (2014) no. 4, pp. 1124-1139
[21] A new condition on invariance principles for stationary random fields, Stat. Sin., Volume 23 (2013) no. 4, pp. 1673-1696
- Moment inequalities for sums of weakly dependent random fields, Bernoulli, Volume 30 (2024) no. 3 | DOI:10.3150/23-bej1682
- On the Quenched Functional Central Limit Theorem for Stationary Random Fields under Projective Criteria, Latin American Journal of Probability and Mathematical Statistics, Volume 21 (2024) no. 2, p. 1215 | DOI:10.30757/alea.v21-47
- Deviation inequality for Banach-valued orthomartingales, Stochastic Processes and their Applications, Volume 175 (2024), p. 104391 | DOI:10.1016/j.spa.2024.104391
- An exponential inequality for orthomartingale difference random fields and some applications, Annales Henri Lebesgue, Volume 6 (2023), p. 575 | DOI:10.5802/ahl.172
- Functional Central Limit Theorem via Nonstationary Projective Conditions, High Dimensional Probability IX, Volume 80 (2023), p. 229 | DOI:10.1007/978-3-031-26979-0_10
- On the central limit theorem for stationary random fields under L1-projective condition, Electronic Communications in Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ecp486
- Bound on the maximal function associated to the law of the iterated logarithms for Bernoulli random fields, Stochastics, Volume 94 (2022) no. 2, p. 248 | DOI:10.1080/17442508.2021.1920942
- On the weak invariance principle for non-adapted stationary random fields under projective criteria, Stochastics and Dynamics, Volume 22 (2022) no. 05 | DOI:10.1142/s0219493722500137
- Maximal function associated to the bounded law of the iterated logarithms via orthomartingale approximation, Journal of Mathematical Analysis and Applications, Volume 496 (2021) no. 1, p. 124792 | DOI:10.1016/j.jmaa.2020.124792
- Central limit theorems for group actions which are exponentially mixing of all orders, Journal d'Analyse Mathématique, Volume 141 (2020) no. 2, p. 457 | DOI:10.1007/s11854-020-0106-7
- Quenched Invariance Principles for Orthomartingale-Like Sequences, Journal of Theoretical Probability, Volume 33 (2020) no. 3, p. 1238 | DOI:10.1007/s10959-019-00914-z
- On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria, Journal of Theoretical Probability, Volume 33 (2020) no. 4, p. 2351 | DOI:10.1007/s10959-019-00943-8
- Central limit theorem for Fourier transform and periodogram of random fields, Bernoulli, Volume 25 (2019) no. 1 | DOI:10.3150/17-bej995
- On limit theorems for fields of martingale differences, Stochastic Processes and their Applications, Volume 129 (2019) no. 3, p. 841 | DOI:10.1016/j.spa.2018.03.021
- Martingale approximations for random fields, Electronic Communications in Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ecp128
- On the normal approximation for random fields via martingale methods, Stochastic Processes and their Applications, Volume 128 (2018) no. 4, p. 1333 | DOI:10.1016/j.spa.2017.07.012
- Martingale-coboundary representation for stationary random fields, Stochastics and Dynamics, Volume 18 (2018) no. 02, p. 1850011 | DOI:10.1142/s0219493718500119
- Invariance principle via orthomartingale approximation, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850043 | DOI:10.1142/s0219493718500430
- A Functional CLT for Fields of Commuting Transformations Via Martingale Approximation, Journal of Mathematical Sciences, Volume 219 (2016) no. 5, p. 765 | DOI:10.1007/s10958-016-3145-y
- Limit theorems for weighted Bernoulli random fields under Hannan’s condition, Stochastic Processes and their Applications, Volume 126 (2016) no. 6, p. 1819 | DOI:10.1016/j.spa.2015.12.006
Cité par 20 documents. Sources : Crossref