Nous prouvons lʼunimodalité stricte des coefficients q-binomiaux comme polynômes en q. La preuve est basée sur la combinatoire de certains tableaux de Young et la propriété du semi-groupe des coefficients de Kronecker des représentations de .
We prove the strict unimodality of the q-binomial coefficients as polynomials in q. The proof is based on the combinatorics of certain Young tableaux and the semigroup property of Kronecker coefficients of representations.
Accepté le :
Publié le :
@article{CRMATH_2013__351_11-12_415_0, author = {Pak, Igor and Panova, Greta}, title = {Strict unimodality of \protect\emph{q}-binomial coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--418}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.06.008}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/} }
TY - JOUR AU - Pak, Igor AU - Panova, Greta TI - Strict unimodality of q-binomial coefficients JO - Comptes Rendus. Mathématique PY - 2013 SP - 415 EP - 418 VL - 351 IS - 11-12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/ DO - 10.1016/j.crma.2013.06.008 LA - en ID - CRMATH_2013__351_11-12_415_0 ER -
%0 Journal Article %A Pak, Igor %A Panova, Greta %T Strict unimodality of q-binomial coefficients %J Comptes Rendus. Mathématique %D 2013 %P 415-418 %V 351 %N 11-12 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/ %R 10.1016/j.crma.2013.06.008 %G en %F CRMATH_2013__351_11-12_415_0
Pak, Igor; Panova, Greta. Strict unimodality of q-binomial coefficients. Comptes Rendus. Mathématique, Tome 351 (2013) no. 11-12, pp. 415-418. doi : 10.1016/j.crma.2013.06.008. http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/
[1] (Mem. Am. Math. Soc.), Volume vol. 413 (1989), p. 106
[2] Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., vol. 178, AMS, Providence, RI, 1994, pp. 71-89
[3] Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007), pp. 575-585
[4] Unimodality of generalized Gaussian coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992) no. 5, pp. 497-501
[5] An invitation to the generalized saturation conjecture, Publ. RIMS, Volume 40 (2004), pp. 1147-1239
[6] A partition of into saturated symmetric chains, Eur. J. Comb., Volume 1 (1980), pp. 61-63
[7] An elementary proof of a q-binomial identity, q-Series and Partitions, Inst. Math. and Its Appl., vol. 18, Springer, New York, 1989, pp. 73-75
[8] Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995
[9] On rectangular Kronecker coefficients, J. Algebr. Comb., Volume 33 (2011), pp. 153-162
[10] Rectangular Schur functions and the basic representation of affine Lie algebras, Discrete Math., Volume 298 (2005), pp. 285-300
[11] Unimodality of Gaussian coefficients: a constructive proof, J. Comb. Theory, Ser. A, Volume 53 (1990), pp. 29-52
[12] Unimodality via Kronecker products | arXiv
[13] Kronecker products, characters, partitions, and the tensor square conjectures | arXiv
[14] Klarner systems and tiling boxes with polyominoes, J. Comb. Theory, Ser. A, Volume 111 (2005), pp. 89-105
[15] Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. N.Y. Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535
[16] Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999
[17] Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philos. Mag. (Coll. Math. Papers), Volume 5 (1878), pp. 178-188 http://tinyurl.com/c94pphj (reprinted, vol. 3, 1973, pp. 117-126 available at)
[18] E. Vallejo, Kronecker squares of complex characters and Littlewood–Richardson multi-tableaux, preprint.
[19] A symmetric chain decomposition of , Eur. J. Comb., Volume 1 (1980), pp. 379-383
[20] Kathy OʼHaraʼs constructive proof of the unimodality of the Gaussian polynomials, Am. Math. Mon., Volume 96 (1989), pp. 590-602
[21] Littlewood–Richardson semigroups, New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 337-345
Cité par Sources :