Combinatorics
Strict unimodality of q-binomial coefficients
[Lʼunimodalité stricte des coefficients q-binomiaux]
Comptes Rendus. Mathématique, Tome 351 (2013) no. 11-12, pp. 415-418.

Nous prouvons lʼunimodalité stricte des coefficients q-binomiaux (nk)q comme polynômes en q. La preuve est basée sur la combinatoire de certains tableaux de Young et la propriété du semi-groupe des coefficients de Kronecker des représentations de Sn.

We prove the strict unimodality of the q-binomial coefficients (nk)q as polynomials in q. The proof is based on the combinatorics of certain Young tableaux and the semigroup property of Kronecker coefficients of Sn representations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.06.008
Pak, Igor 1 ; Panova, Greta 1

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
@article{CRMATH_2013__351_11-12_415_0,
     author = {Pak, Igor and Panova, Greta},
     title = {Strict unimodality of \protect\emph{q}-binomial coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--418},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/}
}
TY  - JOUR
AU  - Pak, Igor
AU  - Panova, Greta
TI  - Strict unimodality of q-binomial coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 415
EP  - 418
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/
DO  - 10.1016/j.crma.2013.06.008
LA  - en
ID  - CRMATH_2013__351_11-12_415_0
ER  - 
%0 Journal Article
%A Pak, Igor
%A Panova, Greta
%T Strict unimodality of q-binomial coefficients
%J Comptes Rendus. Mathématique
%D 2013
%P 415-418
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/
%R 10.1016/j.crma.2013.06.008
%G en
%F CRMATH_2013__351_11-12_415_0
Pak, Igor; Panova, Greta. Strict unimodality of q-binomial coefficients. Comptes Rendus. Mathématique, Tome 351 (2013) no. 11-12, pp. 415-418. doi : 10.1016/j.crma.2013.06.008. http://www.numdam.org/articles/10.1016/j.crma.2013.06.008/

[1] Brenti, F. (Mem. Am. Math. Soc.), Volume vol. 413 (1989), p. 106

[2] Brenti, F. Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., vol. 178, AMS, Providence, RI, 1994, pp. 71-89

[3] Christandl, M.; Harrow, A.W.; Mitchison, G. Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007), pp. 575-585

[4] Kirillov, A.N. Unimodality of generalized Gaussian coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992) no. 5, pp. 497-501

[5] Kirillov, A.N. An invitation to the generalized saturation conjecture, Publ. RIMS, Volume 40 (2004), pp. 1147-1239

[6] Lindström, B. A partition of L(3,n) into saturated symmetric chains, Eur. J. Comb., Volume 1 (1980), pp. 61-63

[7] Macdonald, I.G. An elementary proof of a q-binomial identity, q-Series and Partitions, Inst. Math. and Its Appl., vol. 18, Springer, New York, 1989, pp. 73-75

[8] Macdonald, I.G. Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995

[9] Manivel, L. On rectangular Kronecker coefficients, J. Algebr. Comb., Volume 33 (2011), pp. 153-162

[10] Mizukawa, H.; Yamada, H.-F. Rectangular Schur functions and the basic representation of affine Lie algebras, Discrete Math., Volume 298 (2005), pp. 285-300

[11] OʼHara, K.M. Unimodality of Gaussian coefficients: a constructive proof, J. Comb. Theory, Ser. A, Volume 53 (1990), pp. 29-52

[12] Pak, I.; Panova, G. Unimodality via Kronecker products | arXiv

[13] Pak, I.; Panova, G.; Vallejo, E. Kronecker products, characters, partitions, and the tensor square conjectures | arXiv

[14] Reid, M. Klarner systems and tiling boxes with polyominoes, J. Comb. Theory, Ser. A, Volume 111 (2005), pp. 89-105

[15] Stanley, R.P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. N.Y. Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535

[16] Stanley, R.P. Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999

[17] Sylvester, J.J. Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philos. Mag. (Coll. Math. Papers), Volume 5 (1878), pp. 178-188 http://tinyurl.com/c94pphj (reprinted, vol. 3, 1973, pp. 117-126 available at)

[18] E. Vallejo, Kronecker squares of complex Sn characters and Littlewood–Richardson multi-tableaux, preprint.

[19] West, D.B. A symmetric chain decomposition of L(4,n), Eur. J. Comb., Volume 1 (1980), pp. 379-383

[20] Zeilberger, D. Kathy OʼHaraʼs constructive proof of the unimodality of the Gaussian polynomials, Am. Math. Mon., Volume 96 (1989), pp. 590-602

[21] Zelevinsky, A. Littlewood–Richardson semigroups, New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 337-345

Cité par Sources :