Complex Analysis
Optimal constant problem in the L2 extension theorem
[Problème de la constante optimale dans le théorème dʼextension L2]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 15-16, pp. 753-756.

Dans cette Note, nous résolvons le problème de la détermination de la constante optimale dans le théorème dʼextension L2 avec poids négligeable sur les variétés de Stein. En application, nous prouvons la conjecture de Suita sur des surfaces de Riemann arbitraires.

In this Note, we solve the optimal constant problem in the L2-extension theorem with negligible weight on Stein manifolds. As an application, we prove the Suita conjecture on arbitrary open Riemann surfaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.08.007
Guan, Qiʼan 1 ; Zhou, Xiangyu 2

1 Beijing International Center for Mathematical Research, Peking University, Beijing, China
2 Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China
@article{CRMATH_2012__350_15-16_753_0,
     author = {Guan, Qi'an and Zhou, Xiangyu},
     title = {Optimal constant problem in the $ {L}^{2}$ extension theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {753--756},
     publisher = {Elsevier},
     volume = {350},
     number = {15-16},
     year = {2012},
     doi = {10.1016/j.crma.2012.08.007},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2012.08.007/}
}
TY  - JOUR
AU  - Guan, Qiʼan
AU  - Zhou, Xiangyu
TI  - Optimal constant problem in the $ {L}^{2}$ extension theorem
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 753
EP  - 756
VL  - 350
IS  - 15-16
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2012.08.007/
DO  - 10.1016/j.crma.2012.08.007
LA  - en
ID  - CRMATH_2012__350_15-16_753_0
ER  - 
%0 Journal Article
%A Guan, Qiʼan
%A Zhou, Xiangyu
%T Optimal constant problem in the $ {L}^{2}$ extension theorem
%J Comptes Rendus. Mathématique
%D 2012
%P 753-756
%V 350
%N 15-16
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2012.08.007/
%R 10.1016/j.crma.2012.08.007
%G en
%F CRMATH_2012__350_15-16_753_0
Guan, Qiʼan; Zhou, Xiangyu. Optimal constant problem in the $ {L}^{2}$ extension theorem. Comptes Rendus. Mathématique, Tome 350 (2012) no. 15-16, pp. 753-756. doi : 10.1016/j.crma.2012.08.007. https://www.numdam.org/articles/10.1016/j.crma.2012.08.007/

[1] Berndtsson, B. The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. LʼInst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094

[2] Z. Blocki, On the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[3] Z. Blocki, Suita conjecture and the Ohsawa–Takegoshi extension theorem, preprint, 2012.

[4] Cao, J.; Shaw, M.-C.; Wang, L. Estimates for the ¯-Neumann problem and nonexistence of C2 Levi-flat hypersurfaces in CPn, Math. Z., Volume 248 (2004), pp. 183-221

[5] Chen, B. A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, Volume 24 (2003), pp. 129-134 (in Chinese)

[6] Chen, S.-C.; Shaw, M.-C. Partial Differential Equations in Several Complex Variables, AMS/IP, 2001

[7] Demailly, J.-P. On the Ohsawa–Takegoshi–Manivel L2 extension theorem, September 1997, Paris (Progress in Mathematics) (2000)

[8] Demailly, J.-P. Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html

[9] Demailly, J.-P. Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010

[10] Guan, Q.A.; Zhou, X.Y.; Zhu, L.F. On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 797-800

[11] Manivel, L. Un théorème de prolongement L2 de sections holomorphes dʼun fibré vectoriel, Math. Zeitschrift, Volume 212 (1993), pp. 107-122

[12] McNeal, J. On large values of L2 holomorphic functions, Math. Res. Lett., Volume 3 (1996) no. 2, pp. 247-259

[13] McNeal, J.; Varolin, D. Analytic inversion of adjunction: L2 extension theorems with gain, Ann. LʼInst. Fourier (Grenoble), Volume 57 (2007) no. 3, pp. 703-718

[14] Ohsawa, T. On the extension of L2 holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225

[15] Ohsawa, T. Addendum to “On the Bergman kernel of hyperconvex domains”, Nagoya Math. J., Volume 137 (1995), pp. 145-148

[16] Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204

[17] Siu, Y.-T. Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, Volume 17 (1982), pp. 55-138

[18] Siu, Y.-T. The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Hayama, World Scientific (1996), pp. 577-592

[19] Siu, Y.-T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277

[20] Suita, N. Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217

[21] Straube, E. Lectures on the L2-Sobolev Theory of the ¯-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich, 2010

[22] Zhu, L.F.; Guan, Q.A.; Zhou, X.Y. On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity with a non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601

  • GUAN, Qi'an; MI, Zhitong; YUAN, Zheng Guan–Zhou's unified version of optimal L2 extension theorem on weakly pseudoconvex Kähler manifolds, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1 | DOI:10.2969/jmsj/91919191
  • Bao, Shijie; Guan, Qi’an; Yuan, Zheng Boundary points, minimal L2 integrals and concavity property, Mathematische Annalen, Volume 391 (2025) no. 4, p. 5809 | DOI:10.1007/s00208-024-03056-8
  • Guan, Qi'an; Mi, Zhitong; Yuan, Zheng Concavity property of minimal L2 integrals with Lebesgue measurable gain II, Advances in Mathematics, Volume 450 (2024), p. 109766 | DOI:10.1016/j.aim.2024.109766
  • Liu, Zhuo; Xu, Wang Characterizations of Griffiths positivity, pluriharmonicity and flatness, Journal of Functional Analysis, Volume 287 (2024) no. 7, p. 110532 | DOI:10.1016/j.jfa.2024.110532
  • Xu, Wang; Zhou, Xiangyu Optimal L2 extensions of openness type, Mathematische Annalen, Volume 390 (2024) no. 1, p. 1249 | DOI:10.1007/s00208-023-02774-9
  • Guan, Qi’an; Sun, Xun; Yuan, Zheng A remark on a weighted version of Suita conjecture for higher derivatives, Mathematische Zeitschrift, Volume 307 (2024) no. 1 | DOI:10.1007/s00209-024-03486-9
  • WATANABE, YUTA DUAL NAKANO POSITIVITY AND SINGULAR NAKANO POSITIVITY OF DIRECT IMAGE SHEAVES, Nagoya Mathematical Journal (2024), p. 1 | DOI:10.1017/nmj.2024.20
  • Guan, Qi’an; Mi, Zhitong; Yuan, Zheng Optimal L2 Extension for Holomorphic Vector Bundles with Singular Hermitian Metrics, Peking Mathematical Journal (2024) | DOI:10.1007/s42543-024-00085-9
  • Guan, Qi’an; Yuan, Zheng Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain IV: Product of Open Riemann Surfaces, Peking Mathematical Journal, Volume 7 (2024) no. 1, p. 91 | DOI:10.1007/s42543-022-00053-1
  • Bao, Shijie; Guan, Qi’an Modules at Boundary Points, Fiberwise Bergman Kernels, and Log-Subharmonicity, Peking Mathematical Journal, Volume 7 (2024) no. 2, p. 441 | DOI:10.1007/s42543-023-00070-8
  • Bao, Shijie; Guan, Qi’an; Mi, Zhitong; Yuan, Zheng Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain VII–Negligible Weights, The Bergman Kernel and Related Topics, Volume 447 (2024), p. 1 | DOI:10.1007/978-981-99-9506-6_1
  • Zhou, Xiangyu Converse of L2 Existence and Extension of Cohomology Classes, The Bergman Kernel and Related Topics, Volume 447 (2024), p. 357 | DOI:10.1007/978-981-99-9506-6_15
  • Zhou, Xiangyu Recent progress in the theory of functions of several complex variables and complex geometry, Theoretical and Mathematical Physics, Volume 218 (2024) no. 1, p. 163 | DOI:10.1134/s0040577924010112
  • Xu, Wang; Zhou, Xiangyu Optimal L 2 Extensions of Openness Type and Related Topics, Comptes Rendus. Mathématique, Volume 361 (2023) no. G3, p. 679 | DOI:10.5802/crmath.437
  • Deng, Fusheng; Ning, Jiafu; Wang, Zhiwei; Zhou, Xiangyu Positivity of holomorphic vector bundles in terms of Lp-estimates for ¯, Mathematische Annalen, Volume 385 (2023) no. 1-2, p. 575 | DOI:10.1007/s00208-021-02348-7
  • Kim, Dano; Seo, Hoseob On L2 extension from singular hypersurfaces, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03248-z
  • Li, Zhi; Xu, Wang; Zhou, Xiangyu On Demailly’s L2 extension theorem from non-reduced subvarieties, Mathematische Zeitschrift, Volume 305 (2023) no. 2 | DOI:10.1007/s00209-023-03351-1
  • GUAN, QI’AN; YUAN, ZHENG CONCAVITY PROPERTY OF MINIMAL INTEGRALS WITH LEBESGUE MEASURABLE GAIN, Nagoya Mathematical Journal, Volume 252 (2023), p. 842 | DOI:10.1017/nmj.2023.12
  • Bao, Shijie; Guan, Qi’an; Yuan, Zheng Concavity Property of Minimal L2 Integrals with Lebesgue Measurable Gain V–Fibrations Over Open Riemann Surfaces, The Journal of Geometric Analysis, Volume 33 (2023) no. 6 | DOI:10.1007/s12220-023-01234-9
  • Guan, Qi’an; Li, Zhenqian; Zhou, Xiangyu Stability of Multiplier Ideal Sheaves, Chinese Annals of Mathematics, Series B, Volume 43 (2022) no. 5, p. 819 | DOI:10.1007/s11401-022-0360-3
  • GUAN, Qi'an; YUAN, Zheng An optimal support function related to the strong openness conjecture, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 4 | DOI:10.2969/jmsj/87048704
  • YAO, SHA; LI, ZHI; ZHOU, XIANGYU ON THE OPTIMAL EXTENSION THEOREM AND A QUESTION OF OHSAWA, Nagoya Mathematical Journal, Volume 245 (2022), p. 154 | DOI:10.1017/nmj.2020.34
  • Zhou, Xiangyu; Zhu, Langfeng L2 Extensions with Singular Metrics on Kähler Manifolds, Acta Mathematica Scientia, Volume 41 (2021) no. 6, p. 2021 | DOI:10.1007/s10473-021-0614-2
  • Zhou, Xiangyu; Zhu, Langfeng Extension of cohomology classes and holomorphic sections defined on subvarieties, Journal of Algebraic Geometry, Volume 31 (2021) no. 1, p. 137 | DOI:10.1090/jag/766
  • Deng, Fusheng; Ning, Jiafu; Wang, Zhiwei Characterizations of plurisubharmonic functions, Science China Mathematics, Volume 64 (2021) no. 9, p. 1959 | DOI:10.1007/s11425-021-1873-y
  • Guan, Qi’an A remark on the extension of L2 holomorphic functions, International Journal of Mathematics, Volume 31 (2020) no. 02, p. 2050017 | DOI:10.1142/s0129167x20500172
  • Guan, Qi’an; Zhou, Xiangyu Restriction formula and subadditivity property related to multiplier ideal sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 769, p. 1 | DOI:10.1515/crelle-2019-0043
  • Deng, Fusheng; Wang, Zhiwei; Zhang, Liyou; Zhou, Xiangyu Linear invariants of complex manifolds and their plurisubharmonic variations, Journal of Functional Analysis, Volume 279 (2020) no. 1, p. 108514 | DOI:10.1016/j.jfa.2020.108514
  • Zhou, Xiangyu; Zhu, Langfeng Siu’s lemma, optimal L2 extension and applications to twisted pluricanonical sheaves, Mathematische Annalen, Volume 377 (2020) no. 1-2, p. 675 | DOI:10.1007/s00208-018-1783-8
  • Zhou, Xiangyu; Zhu, Langfeng Optimal L2 extension of sections from subvarieties in weakly pseudoconvex manifolds, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, p. 475 | DOI:10.2140/pjm.2020.309.475
  • Zhou, Xiangyu Recent Results in Several Complex Variables and Complex Geometry, Proceedings of the Steklov Institute of Mathematics, Volume 311 (2020) no. 1, p. 245 | DOI:10.1134/s0081543820060164
  • Poletsky, Evgeny A. Pluricomplex Green Functions on Manifolds, The Journal of Geometric Analysis, Volume 30 (2020) no. 2, p. 1396 | DOI:10.1007/s12220-019-00350-9
  • Zhou, Xiang Yu Недавние результаты в многомерном комплексном анализе и комплексной геометрии, Труды Математического института имени В. А. Стеклова, Volume 311 (2020), p. 264 | DOI:10.4213/tm4144
  • Guan, Qi'an A sharp effectiveness result of Demailly's strong openness conjecture, Advances in Mathematics, Volume 348 (2019), p. 51 | DOI:10.1016/j.aim.2019.03.017
  • GUAN, Qi'an A proof of Saitoh's conjecture for conjugate Hardy H2 kernels, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 4 | DOI:10.2969/jmsj/80668066
  • Zhou, Xiangyu Roles of Plurisubharmonic Functions, Proceedings of the Steklov Institute of Mathematics, Volume 306 (2019) no. 1, p. 288 | DOI:10.1134/s0081543819050237
  • Чжоу, Щань-Юй; Zhou, Xiang Yu Плюрисубгармонические функции и их приложения, Труды Математического института имени В.А. Стеклова, Volume 306 (2019), p. 304 | DOI:10.4213/tm4008
  • Meng, Xiankui; Zhou, Xiangyu Pseudo-effective line bundles over holomorphically convex manifolds, Journal of Algebraic Geometry, Volume 28 (2018) no. 1, p. 169 | DOI:10.1090/jag/714
  • Ohsawa, Takeo On the extension of L 2 holomorphic functions VII: Hypersurfaces with isolated singularities, Science China Mathematics, Volume 60 (2017) no. 6, p. 1083 | DOI:10.1007/s11425-015-9038-9
  • Guan, Qi’An; Zhou, XiangYu Strong openness of multiplier ideal sheaves and optimal L 2 extension, Science China Mathematics, Volume 60 (2017) no. 6, p. 967 | DOI:10.1007/s11425-017-9055-5
  • Guan, Qi'an; Zhou, Xiangyu A solution of an L^2 extension problem with an optimal estimate and applications, Annals of Mathematics (2015), p. 1139 | DOI:10.4007/annals.2015.181.3.6
  • Zhou, Xiangyu A Survey on L 2 Extension Problem, Complex Geometry and Dynamics, Volume 10 (2015), p. 291 | DOI:10.1007/978-3-319-20337-9_13
  • Guan, Qi’an; Zhou, Xiangyu Effectiveness of Demailly’s strong openness conjecture and related problems, Inventiones mathematicae, Volume 202 (2015) no. 2, p. 635 | DOI:10.1007/s00222-014-0575-3
  • Ohsawa, Takeo Application and simplified proof of a sharp L2 extension theorem, Nagoya Mathematical Journal, Volume 220 (2015), p. 81 | DOI:10.1215/00277630-3335780
  • Guan, Qi’An; Zhou, XiangYu Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Science China Mathematics, Volume 58 (2015) no. 1, p. 35 | DOI:10.1007/s11425-014-4946-4

Cité par 45 documents. Sources : Crossref