Ordinary Differential Equations/Dynamical Systems
Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems
[Convergence vers l'équilibre pour des systèmes compétitifs de Lotka–Volterra et du Chémostat]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1267-1272.

Nous étudions un système généralisé d'équations différentielles modélisant un nombre fini de populations biologiques en interaction compétitive. En adaptant les techniques de Jabin et Raoul [8] et de Champagnat et Jabin (2010) [2], nous prouvons la convergence vers un unique équilibre stable.

We study a generalized system of ODE's modeling a finite number of biological populations in a competitive interaction. We adapt the techniques in Jabin and Raoul [8] and Champagnat and Jabin (2010) [2] to prove the convergence to a unique stable equilibrium.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.001
Champagnat, Nicolas 1 ; Jabin, Pierre-Emmanuel 1, 2 ; Raoul, Gaël 3

1 TOSCA project-team, INRIA Sophia Antipolis – Méditerranée, 2004 rte des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex, France
2 Laboratoire J.-A. Dieudonné, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
3 DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
@article{CRMATH_2010__348_23-24_1267_0,
     author = {Champagnat, Nicolas and Jabin, Pierre-Emmanuel and Raoul, Ga\"el},
     title = {Convergence to equilibrium in competitive {Lotka{\textendash}Volterra} and chemostat systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1267--1272},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.11.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2010.11.001/}
}
TY  - JOUR
AU  - Champagnat, Nicolas
AU  - Jabin, Pierre-Emmanuel
AU  - Raoul, Gaël
TI  - Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1267
EP  - 1272
VL  - 348
IS  - 23-24
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2010.11.001/
DO  - 10.1016/j.crma.2010.11.001
LA  - en
ID  - CRMATH_2010__348_23-24_1267_0
ER  - 
%0 Journal Article
%A Champagnat, Nicolas
%A Jabin, Pierre-Emmanuel
%A Raoul, Gaël
%T Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems
%J Comptes Rendus. Mathématique
%D 2010
%P 1267-1272
%V 348
%N 23-24
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2010.11.001/
%R 10.1016/j.crma.2010.11.001
%G en
%F CRMATH_2010__348_23-24_1267_0
Champagnat, Nicolas; Jabin, Pierre-Emmanuel; Raoul, Gaël. Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems. Comptes Rendus. Mathématique, Tome 348 (2010) no. 23-24, pp. 1267-1272. doi : 10.1016/j.crma.2010.11.001. http://www.numdam.org/articles/10.1016/j.crma.2010.11.001/

[1] N. Champagnat, S. Méléard, Polymorphic evolution sequence and evolutionary branching, Probab. Theor. Relat. Fields (2010), , in press. | DOI

[2] N. Champagnat, P.E. Jabin, The evolutionary limit for models of populations interacting competitively with many resources, preprint, 2010.

[3] Diekmann, O. A beginner's guide to adaptive dynamics, Banach Center Publications, Volume 63 (2004), pp. 47-86

[4] Diekmann, O.; Jabin, P.E.; Mischler, S.; Perthame, B. The dynamics of adaptation: An illuminating example and a Hamilton–Jacobi approach, Theor. Popul. Biol., Volume 67 (2005), pp. 257-271

[5] Gopalsamy, K. Global asymptotic stability in Volterra's population systems, J. Math. Biology, Volume 19 (1984), pp. 157-168

[6] Hirsch, M.W. Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity, Volume 1 (1988) no. 1, pp. 51-71

[7] Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998

[8] P.E. Jabin, G. Raoul, Selection dynamics with competition, J. Math. Biol., in press.

[9] Krisztina, K.; Kovács, S. Qualitative behavior of n-dimensional ratio-dependent predator–prey systems, Appl. Math. Comput., Volume 199 (2008) no. 2, pp. 535-546

[10] Metz, J.A.J.; Geritz, S.A.H.; Meszéna, G.; Jacobs, F.A.J.; van Heerwaasden, J.S. Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction (van Strien, S.J.; Verduyn Lunel, S.M., eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 1996, pp. 183-231

[11] Perthame, B. Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, 2007

[12] Smith, H.L.; Waltman, P. The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, vol. 13, Cambridge University Press, 1995

[13] Zeeman, M.L. Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems, Dynam. Stability Systems, Volume 8 (1993) no. 3, pp. 189-217

Cité par Sources :