Nous esquissons un calcul fonctionnel non anticipatif pour des fonctionelles d'une semi-martingale Brownienne et sa variation quadratique. Nous montrons, pour des fonctionnelles vérifiant une propriété de Lipschitz locale, une formule de changement de variable qui généralise la formule d'Ito. Ce résultat permet d'obtenir une version constructive du théorème de représentation de martingale pour une classe de fonctionnelles Browniennes.
We develop a non-anticipative pathwise calculus for functionals of a Brownian semimartingale and its quadratic variation. A functional Ito formula is obtained for locally Lipschitz functionals of a Brownian semimartingale and its quadratic variation. As a result we obtain a constructive martingale representation theorem for Brownian martingales verifying a regularity property.
Publié le :
@article{CRMATH_2010__348_1-2_57_0, author = {Cont, Rama and Fournie, David}, title = {A functional extension of the {Ito} formula}, journal = {Comptes Rendus. Math\'ematique}, pages = {57--61}, publisher = {Elsevier}, volume = {348}, number = {1-2}, year = {2010}, doi = {10.1016/j.crma.2009.11.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/} }
TY - JOUR AU - Cont, Rama AU - Fournie, David TI - A functional extension of the Ito formula JO - Comptes Rendus. Mathématique PY - 2010 SP - 57 EP - 61 VL - 348 IS - 1-2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/ DO - 10.1016/j.crma.2009.11.013 LA - en ID - CRMATH_2010__348_1-2_57_0 ER -
Cont, Rama; Fournie, David. A functional extension of the Ito formula. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 57-61. doi : 10.1016/j.crma.2009.11.013. http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/
[1] The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Statist., Volume 41 (1970), pp. 1282-1295
[2] R. Cont, D. Fournié, Functional Ito formula and stochastic integral representation of Brownian functionals, working paper, 2009
[3] Functional Itô calculus, 2009 http://ssrn.com/abstract=1435551 (Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS)
[4] Calcul d'Itô sans probabilités, Séminaire de Probabilités, vol. XV, Springer, Berlin, 1981, pp. 143-150
[5] On the integral representation of functionals of Itô processes, Stochastics, Volume 3 (1979), pp. 17-27
[6] An extension of Clark's formula, Stochastics Stochastics Rep., Volume 37 (1991), pp. 127-131
[7] Stochastic Analysis, Springer, 1997
[8] The Malliavin Calculus and Related Topics, Springer, 1995
[9] Malliavin's calculus and stochastic integral representations of functionals of diffusion processes, Stochastics, Volume 12 (1984), pp. 161-185
[10] The Malliavin calculus, a functional analytic approach, J. Funct. Anal., Volume 44 (1981), pp. 212-257
Cité par Sources :