Functional Analysis/Probability theory
A functional extension of the Ito formula
[Une extension fonctionnelle de la formule d'Ito]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 57-61.

Nous esquissons un calcul fonctionnel non anticipatif pour des fonctionelles d'une semi-martingale Brownienne et sa variation quadratique. Nous montrons, pour des fonctionnelles vérifiant une propriété de Lipschitz locale, une formule de changement de variable qui généralise la formule d'Ito. Ce résultat permet d'obtenir une version constructive du théorème de représentation de martingale pour une classe de fonctionnelles Browniennes.

We develop a non-anticipative pathwise calculus for functionals of a Brownian semimartingale and its quadratic variation. A functional Ito formula is obtained for locally Lipschitz functionals of a Brownian semimartingale and its quadratic variation. As a result we obtain a constructive martingale representation theorem for Brownian martingales verifying a regularity property.

Reçu le :
Publié le :
DOI : 10.1016/j.crma.2009.11.013
Cont, Rama 1, 2 ; Fournie, David 2

1 Laboratoire de probabilités et modèles aléatoires, UMR 7599 CNRS-université Paris VI, cc 188, 4, place Jussieu, 75252 Paris cedex 05, France
2 Columbia University, New York, United States
@article{CRMATH_2010__348_1-2_57_0,
     author = {Cont, Rama and Fournie, David},
     title = {A functional extension of the {Ito} formula},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {57--61},
     publisher = {Elsevier},
     volume = {348},
     number = {1-2},
     year = {2010},
     doi = {10.1016/j.crma.2009.11.013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/}
}
TY  - JOUR
AU  - Cont, Rama
AU  - Fournie, David
TI  - A functional extension of the Ito formula
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 57
EP  - 61
VL  - 348
IS  - 1-2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/
DO  - 10.1016/j.crma.2009.11.013
LA  - en
ID  - CRMATH_2010__348_1-2_57_0
ER  - 
%0 Journal Article
%A Cont, Rama
%A Fournie, David
%T A functional extension of the Ito formula
%J Comptes Rendus. Mathématique
%D 2010
%P 57-61
%V 348
%N 1-2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/
%R 10.1016/j.crma.2009.11.013
%G en
%F CRMATH_2010__348_1-2_57_0
Cont, Rama; Fournie, David. A functional extension of the Ito formula. Comptes Rendus. Mathématique, Tome 348 (2010) no. 1-2, pp. 57-61. doi : 10.1016/j.crma.2009.11.013. http://www.numdam.org/articles/10.1016/j.crma.2009.11.013/

[1] Clark, J.M.C. The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Statist., Volume 41 (1970), pp. 1282-1295

[2] R. Cont, D. Fournié, Functional Ito formula and stochastic integral representation of Brownian functionals, working paper, 2009

[3] Dupire, B. Functional Itô calculus, 2009 http://ssrn.com/abstract=1435551 (Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS)

[4] Föllmer, H. Calcul d'Itô sans probabilités, Séminaire de Probabilités, vol. XV, Springer, Berlin, 1981, pp. 143-150

[5] Haussmann, U.G. On the integral representation of functionals of Itô processes, Stochastics, Volume 3 (1979), pp. 17-27

[6] Karatzas, I.; Ocone, D.L.; Li, J. An extension of Clark's formula, Stochastics Stochastics Rep., Volume 37 (1991), pp. 127-131

[7] Malliavin, P. Stochastic Analysis, Springer, 1997

[8] Nualart, D. The Malliavin Calculus and Related Topics, Springer, 1995

[9] Ocone, D.L. Malliavin's calculus and stochastic integral representations of functionals of diffusion processes, Stochastics, Volume 12 (1984), pp. 161-185

[10] Stroock, D.W. The Malliavin calculus, a functional analytic approach, J. Funct. Anal., Volume 44 (1981), pp. 212-257

Cité par Sources :