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Abstract

If a symmetric matrix field e of order three satisfies the Saint Venant compatibility conditions in a simply-connected domain Ω

in R
3, there then exists a displacement field u of Ω such that e = 1

2 (∇uT + ∇u) in Ω . If the field e is sufficiently smooth, the
displacement u(x) at any point x ∈ Ω can be explicitly computed as a function of e and CURL e by means of a Cesàro–Volterra
path integral formula inside Ω with endpoint x.

We assume here that the components of the field e are only in L2(Ω), in which case the classical path integral formula of Cesàro
and Volterra becomes meaningless. We then establish the existence of a “Cesàro–Volterra formula with little regularity”, which
again provides an explicit solution u to the equation e = 1

2 (∇uT + ∇u) in this case. To cite this article: P.G. Ciarlet et al., C. R.
Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Une généralisation de la formule classique de l’intégrale curviligne de Cesàro–Volterra. Si un champ e de matrices sy-
métriques d’ordre trois vérifie les conditions de compatibilité de Saint Venant dans un domaine simplement connexe Ω de R

3,
alors il existe un champ u de déplacements de Ω tel que e = 1

2 (∇uT + ∇u) dans Ω . Si le champ e est suffisamment régulier, le
déplacement u(x) peut être calculé explicitement en tout point x ∈ Ω comme une fonction de e et de CURL e, au moyen d’une
intégrale curviligne de Cesàro–Volterra le long d’un chemin contenu dans Ω et d’extrémité x.

On suppose ici que les composantes du champ e sont seulement dans L2(Ω), auquel cas la formule intégrale de Cesàro–Volterra
n’a pas de sens. On établit alors l’existence d’une « formule de Cesàro–Volterra avec peu de régularité », qui donne à nouveau dans
ce cas une solution explicite u de l’équation e = 1

2 (∇uT + ∇u). Pour citer cet article : P.G. Ciarlet et al., C. R. Acad. Sci. Paris,
Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Latin indices range in the set {1,2, . . . , n} for some n � 2 and the summation convention with respect to repeated
Latin indices is used in conjunction with this rule. The sets of all real matrices of order n, of all real symmetric
matrices of order n, and of all real antisymmetric matrices of order n, are respectively denoted M

n, S
n, and A

n.
It is well known that, if Ω is a simply-connected open subset of R

n and if a matrix field e = (eij ) ∈ C 2(Ω;S
n)

satisfies the Saint Venant compatibility conditions

∂lj eik + ∂kiejl − ∂liejk − ∂kj eil = 0 in C 0(Ω), (1)

then there exists a vector field u = (ui) ∈ C 3(Ω;R
n) that satisfies the equations

1

2
(∂jui + ∂iuj ) = eij in Ω. (2)

Besides, all other solutions ũ = (̃ui) ∈ C 3(Ω;R
n) to the equations 1

2 (∂j ũi + ∂i ũj ) = eij in Ω are of the form

ũ(x) = u(x) + a + Aox, x ∈ Ω, for some a ∈ R
n and A ∈ A

n. (3)

It is less known (Gurtin [13] constitutes an exception) that an explicit solution u = (ui) to the equations (2) can be
given in the form of the following Cesàro–Volterra path integral formula, so named after Cesàro [4] and Volterra [15]:
Let γ (x) be any path of class C 1 contained in Ω and joining a point x0 ∈ Ω (considered as fixed) to any point x ∈ Ω .
Then

ui(x) =
∫

γ (x)

{
eij (y) + (

∂keij (y) − ∂iekj (y)
)
(xk − yk)

}
dyj , x ∈ Ω. (4)

It can then be verified that each value ui(x) computed by formula (4) is independent of the path chosen for joining
x0 to x, thanks to the compatibility conditions (1).

If n = 3, the Cesàro–Volterra path integral formula (4) can be equivalently rewritten in vector-matrix form, as

u(x) =
∫

γ (x)

e(y)dy +
∫

γ (x)

yx ∧ ([
CURL e(y)

]
dy

)
, x ∈ Ω, (5)

where ∧ designates the vector product in R
3, and CURL designates the matrix curl operator.

The sufficiency of the Saint Venant compatibility conditions (1) was recently shown to hold under substantially
weaker regularity assumptions on the given tensor field e = (eij ), according to the following result, due to Ciarlet and
Ciarlet, Jr. [5]: Let Ω be a bounded and simply-connected open subset of R

n with a Lipschitz-continuous boundary,
and let there be given functions eij = eji ∈ L2(Ω) that satisfy the “Saint Venant compatibility conditions with little
regularity”, viz.,

∂lj eik + ∂kiejl − ∂liejk − ∂kj eil = 0 in H−2(Ω). (6)

Then there exists a vector field (ui) ∈ H 1(Ω;R
3) that satisfies

1

2
(∂jui + ∂iuj ) = eij in L2(Ω). (7)

Besides, all the other solutions ũ = (̃ui) ∈ H 1(Ω;R
3) to the equations 1

2 (∂j ũi + ∂i ũj ) = eij are again of the form
(3) (this result has since then been extended in various ways; see Geymonat and Krasucki [9], Ciarlet, Ciarlet, Jr.,
Geymonat and Krasucki [6], and Amrouche, Ciarlet, Gratie and Kesavan [2]).

Clearly, the “classical” Cesàro–Volterra path integral formula (4) becomes meaningless when the functions eij

satisfying (6) are only in the space L2(Ω). The question then naturally arises as to whether there exists any “Cesàro–
Volterra formula with little regularity”, which (i) would again provide an explicit solution to the equations (7) when
the functions eij are only in L2(Ω) and (ii) would in some way resemble (4).

The purpose of this Note is to provide a positive answer to this question. Complete proofs will be found in [8].
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2. A Poincaré lemma with little regularity

A domain in R
n is an open, bounded, connected subset of R

n, with a Lipschitz-continuous boundary. The mapping
T = (Ti) defined in the next theorem (for a proof, see Corollaries 2.3 and 2.4, Chapter 1, of Girault and Raviart [12]; or
Theorem 2’ of Bourgain and Brezis [3] for the extension to Lp spaces, 1 < p < ∞) plays a key role in our approach.

Theorem 1. Let Ω be a domain in R
n. Then there exists a linear and continuous operator

T = (Ti) :L2
0(Ω) :=

{
v ∈ L2(Ω);

∫
Ω

v dx = 0

}
→ H 1

0

(
Ω;R

n
)
, (8)

such that

−div(T v) = v for all v ∈ L2
0(Ω). (9)

Our approach for finding a Cesàro–Volterra formula with little regularity also relies on the following Poincaré
lemma with little regularity, due to Ciarlet and Ciarlet, Jr. [5] (for recent extensions of this result, see Amrouche,
Ciarlet and Ciarlet, Jr. [1], Geymonat and Krasucki [10,11] and, especially, S. Mardare [14]).

Theorem 2. Let Ω be a simply-connected domain in R
n, and let fi ∈ H−1(Ω) be distributions that satisfy ∂ifj −

∂jfi = 0 in H−2(Ω). Then there exists a function u ∈ L2(Ω), unique up to an additive constant, such that ∂iu = fi

in H−1(Ω).

We first show that, even under the weak regularity assumptions of Theorem 1, there is a way to “compute” a
solution u ∈ L2(Ω) to the equations ∂iu = fi in H−1(Ω).

In what follows, 〈·,〉 denotes the duality pairing between a topological space and its dual space.

Theorem 3. Let Ω be a simply-connected domain in R
n, let the space D0(Ω) be defined as

D0(Ω) :=
{
ϕ ∈ D(Ω);

∫
Ω

ϕ dx = 0

}
, (10)

and let fi ∈ H−1(Ω) be distributions that satisfy ∂ifj − ∂jfi = 0 in H−2(Ω). Then a function u ∈ L2(Ω) satisfies
∂iu = fi in H−1(Ω) if and only if

〈u,ϕ〉 = 〈fi, Tiϕ〉 for all ϕ ∈ D0(Ω), (11)

where T = (Ti) :L2
0(Ω) → H 1

0 (Ω;R
n) is the continuous linear operator defined in Theorem 1.

Interestingly, the solution to the equations ∂iu = fi in H−1(Ω) can also be found by solving a variational problem
(cf. (12) below), which clearly satisfies all the assumptions of the Lax–Milgram lemma:

Theorem 4. Let Ω be a simply-connected domain in R
n, let the space L2

0(Ω) be defined as in (8), and let there be
given distributions fi ∈ H−1(Ω) that satisfy ∂ifj − ∂jfi = 0 in H−2(Ω).

Then the variational problem: Find a function u ∈ L2
0(Ω) such that

〈u,v〉 = 〈fi, Tiv〉 for all v ∈ L2
0(Ω), (12)

has a unique solution, which is also a solution to the equations ∂iu = fi in H−1(Ω).

3. A Cesàro–Volterra formula with little regularity

Given functions eij = eji ∈ L2(Ω) that satisfy the compatibility conditions (6), the classical Cesàro–Volterra path
integral formula (4) becomes meaningless. But we nevertheless show that there is still a way in this case to “compute”
a solution u = (ui) ∈ H 1(Ω;R

n) to Eqs. (7).
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This objective is achieved by means of an explicit expression in terms of the data eij ∈ L2(Ω) of the du-
ality pairings 〈u,ϕ〉 := 〈ui, ϕi〉 = ∫

Ω
uiϕi dx for all vector fields ϕ = (ϕi) ∈ D(Ω;R

n) that satisfy
∫
Ω

ϕi dx =∫
Ω

(xjϕi − xiϕj )dx = 0. By reference with the classical Cesàro–Volterra path integral formula, we will say that rela-
tions (14) constitute the Cesàro–Volterra formula with little regularity (this terminology will be further substantiated
in Theorem 7).

Theorem 5. Let Ω be a simply-connected domain in R
n, let the space D1(Ω;R

n) be defined as

D1
(
Ω;R

n
) :=

{
ϕ = (ϕi) ∈ D

(
Ω;R

n
);∫

Ω

ϕi dx =
∫
Ω

(xjϕi − xiϕj )dx = 0

}
, (13)

and let there be given a matrix field e = (eij ) ∈ L2(Ω;S
3) whose components eij = eji ∈ L2(Ω) satisfy the Saint

Venant compatibility conditions with little regularity (6).
Then a vector field u = (ui) ∈ H 1(Ω;R

n) satisfies Eqs. (7) if and only if

〈ui, ϕi〉 = 〈
eij , Tiϕj + ∂k

[
Ti(Tjϕk − Tkϕj )

]〉
for all ϕ = (ϕi) ∈ D1

(
Ω;R

n
)
, (14)

where T = (Ti) : L2
0(Ω) → H 1

0 (Ω;R
n) is the continuous linear operator defined in Theorem 1.

Sketch of proof. (i) Assume first that a vector field u = (ui) ∈ H 1(Ω;R
n) satisfies 1

2 (∂jui + ∂iuj ) = eij in L2(Ω),
and let there be given a vector field ϕ = (ϕi) ∈ D1(Ω;R

n). Define the functions aij = −aij := 1
2 (∂jui − ∂iuj ) ∈

L2(Ω), so that ∂jui = eij +aij . Since each component ϕi of the vector field ϕ belongs to the space L2
0(Ω), Theorem 1

shows that each vector field T ϕi = (Tjϕi) ∈ H 1
0 (Ω;R

n) satisfies −∂j (Tjϕi) = ϕi in L2(Ω). Consequently,

〈ui, ϕi〉 = 〈eij , Tiϕj 〉 + 1

2
〈aij , Tjϕi − Tiϕj 〉.

We next prove that each function (Tjϕi − Tiϕj ) ∈ H 1
0 (Ω) also belongs to the space L2

0(Ω). Consequently, Tjϕi −
Tiϕj = −∂kTk(Tjϕi − Tiϕj ). We also note that

∂kaij = 1

2
(∂jkui − ∂ikuj ) = −∂iekj + ∂j eki in H−1(Ω),

so that we obtain

〈aij , Tjϕi − Tiϕj 〉 = 2
〈
eij , ∂k

[
Ti(Tjϕk − Tkϕj )

]〉
.

Therefore, relations (14) are established.
(ii) Assume next that a vector field u = (ui) ∈ H 1(Ω;R

n) satisfies relations (14). Let then a matrix field ψ =
(ψij ) ∈ D(Ω;S

n) be given. We first prove that (∂jψij )
n
i=1 ∈ D1(Ω;R

n) and that, by (14),

1

2
〈∂jui + ∂iuj ,ψij 〉 = −〈

eij , Ti(∂kψjk)
〉 + 〈

∂keij − ∂j eik, Ti

(
Tj (∂lψkl)

)〉
.

We next observe that the Saint Venant compatibility conditions with little regularity (6) may be rewritten as

∂lhjki = ∂ihjkl in H−2(Ω), where hjki = −hkji := ∂keji − ∂j eki ∈ H−1(Ω).

The Poincaré lemma with little regularity (Theorem 2) therefore shows that there exist functions pjk ∈ L2(Ω), each
one being unique up to an additive constant, such that ∂ipjk = hjki = ∂keij −∂j eik in H−1(Ω). Since ∂i(pjk +pkj ) =
hjki + hkji = 0, these additive constants can be adjusted in such a way that pjk + pkj = 0 in L2(Ω). Consequently,

〈
∂keij − ∂j eik, Ti

(
Tj (∂lψkl)

)〉 = −1

2

〈
pjk, ∂i

[
Ti

(
Tj (∂lψkl) − Tk(∂lψjl)

)]〉
.

We then show that each function (Tj (∂lψkl) − Tk(∂lψjl)) (i.e., for each j = 1, . . . , n and each k = 1, . . . , n) also
belongs to the space L2

0(Ω). As a result,〈
∂keij − ∂j eik, Ti

(
Tj (∂lψkl)

)〉 = 〈
pjk, Tj (∂lψkl)

〉
,
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so that
1

2
〈∂jui + ∂iuj ,ψij 〉 = 〈eij ,ψij 〉 + 〈

pjk − ejk,ψjk + Tj (∂lψkl)
〉
,

since 〈pjk,ψjk〉 = 0. Noting that the functions qjk := pjk − ejk ∈ L2(Ω) satisfy ∂lqjk = ∂j qlk in H−1(Ω), we again
resort to the Poincaré lemma with little regularity (Theorem 2) to conclude that there exist functions vk ∈ H 1(Ω),
each one being unique up to an additive constant, such that qjk = ∂j vk = pjk − ejk in L2(Ω). Consequently,〈

pjk − ejk,ψjk + Tj (∂lψkl)
〉 = −〈

vk, ∂jψjk + ∂jTj (∂lψkl)
〉
,

since (ψjk +Tj (∂lψkl)) ∈ H 1
0 (Ω). But the definition of the operators Tj and the symmetries ψkl = ψlk together imply

that

−∂jTj (∂lψkl) = ∂lψkl = ∂jψjk.

Combining the above relations, we are thus left with

1

2
〈∂jui + ∂iuj ,ψij 〉 = 〈eij ,ψij 〉.

Since this relation holds for any matrix field ψ = (ψij ) ∈ D(Ω;S
n), it follows that 1

2 (∂jui + ∂iuj ) = eij in L2(Ω),
as announced. �

We also show that the solution u = (ui) to the equations 1
2 (∂jui + ∂iuj ) = eij in L2(Ω) can be found by solving

a variational problem (cf. (16) below), which satisfies all the assumptions of the Lax–Milgram lemma (as is easily
seen). Note that both Theorems 5 and 6 have direct applications to intrinsic elasticity; cf. [7].

Theorem 6. Let Ω be a simply-connected domain in R
n, let the space L2

1(Ω;R
n) be defined as

L2
1

(
Ω;R

n
) :=

{
v = (vi) ∈ L2(Ω;R

n);
∫
Ω

vi dx =
∫
Ω

(xjvi − xivj )dx = 0

}
, (15)

and let there be given functions eij = eji ∈ L2(Ω) that satisfy the Saint Venant compatibility conditions with little
regularity (6).

Then the variational problem: Find a vector field (ui) ∈ L2
1(Ω;R

n) such that

〈ui, vi〉 = 〈
eij , Tivj + ∂k

[
Ti(Tj vk − Tkvj )

]〉
for all (vi) ∈ L2

1

(
Ω;R

n
)
, (16)

has a unique solution. Besides, (ui) is in fact in the space H 1(Ω;R
n) and is a particular solution to the equations

1
2 (∂jui + ∂iuj ) = eij in L2(Ω).

Finally, we show that, when the data are smooth enough, the Cesàro–Volterra formula with little regularity reduces
to the classical Cesàro–Volterra formula.

Note that the proof of relation (17) below, which only involves the functions eij , does not use that its left-hand side
is also given by 〈ui, ϕi〉, by Theorem 5 (otherwise this information would immediately provide a “proof” of (17),
through the expression of ui(x) given by the classical Cesàro–Volterra formula).

Theorem 7. Let the assumptions be those of Theorem 5, the functions eij = eji ∈ L2(Ω) being in addition assumed
to be in the space C 1(Ω) ∩ H 1(Ω), and let the operator (Ti) :L2

0(Ω) → H 1
0 (Ω;R

n) be that defined in Theorem 1.
Fix a point x0 ∈ Ω , and, given any point x ∈ Ω , let γ (x) be any path of class C 1 contained in Ω and joining x0

to x. Then the right-hand side of the Cesàro–Volterra formula with little regularity (14) can be rewritten in this case
as 〈

eij , Tiϕj + ∂k

[
Ti(Tjϕk − Tkϕj )

]〉
=

∫
Ω

[ ∫ {
eij (y) + (

∂keij (y) − ∂iekj (y)
)
(xk − yk)

}
dyj }

]
ϕi(x)dx (17)
γ (x)
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for all (ϕi) ∈ D1(Ω;R
n).

Relations (17) in turn imply that any vector field (ui) ∈ H 1(Ω;R
n) that satisfies the Cesàro–Volterra formula with

little regularity (14) is also given by

ui(x) =
∫

γ (x)

{
eij (y) + (

∂keij (y) − ∂iekj (y)
)
(xk − yk)

}
dyj , x ∈ Ω, (18)

up to the addition of a vector field of the form x ∈ Ω 	→ a + Aox for some a ∈ R
n and A ∈ A

n. Besides, (ui) ∈
C 2(Ω;R

n) in this case.

Acknowledgements

The work described in this paper was supported by a Strategic Research Grant from City University of Hong Kong
(Project No. 7002222).

References

[1] C. Amrouche, P.G. Ciarlet, P. Ciarlet Jr., Vector and scalar potentials, Poincaré theorem and Korn’s inequality, C. R. Acad. Sci. Paris, Ser.
I 345 (2007) 603–608.

[2] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures
Appl. 86 (2006) 116–132.

[3] J. Bourgain, H. Brezis, On the equation divY = f and application to control of phases, J. Amer. Math. Soc. 16 (2002) 393–426.
[4] E. Cesàro, Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche, Rend. Napoli 12 (1906) 311–321.
[5] P.G. Ciarlet, P. Ciarlet Jr., Direct computation of stresses in planar linearized elasticity, Math. Models Methods Appl. Sci. (2009), in press.
[6] P.G. Ciarlet, P. Ciarlet Jr., G. Geymonat, F. Krasucki, Characterization of the kernel of the operator CURL CURL, C. R. Acad. Sci. Paris, Ser.

I 344 (2007) 305–308.
[7] P.G. Ciarlet, L. Gratie, C. Mardare, Intrinsic methods in elasticity: A mathematical survey, Discrete and Continuous Dynamical Systems 23

(2009) 133–164.
[8] P.G. Ciarlet, L. Gratie, C. Mardare, A Cesàro–Volterra formula with little regularity, J. Math. Pures Appl. (2009), in press.
[9] G. Geymonat, F. Krasucki, Some remarks on the compatibility conditions in elasticity, Rend. Accad. Naz. Sci. XL 123 (2005) 175–182.

[10] G. Geymonat, F. Krasucki, Beltrami’s solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I 342
(2006) 359–363.

[11] G. Geymonat, F. Krasucki, Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains, Comm. Pure
Appl. Anal. 8 (2009) 295–309.

[12] V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer, Heidelberg, 1986.
[13] M.E. Gurtin, The linear theory of elasticity, in: S. Flügge, C. Truesdell (Eds.), Handbuch der Physik, vol. VIa/2, Springer-Verlag, 1972,

pp. 1–295.
[14] S. Mardare, On Poincaré and de Rham’s theorems, Rev. Roumaine Math. Pures Appl. 53 (2008) 523–541.
[15] V. Volterra, Sur l’équilibre des corps élastiques multiplement connexes, Ann. Ecole Normale 24 (1907) 401–517.


	A generalization of the classical Cesàro-Volterra path integral formula
	Introduction
	A Poincaré lemma with little regularity
	A Cesàro-Volterra formula with little regularity
	Acknowledgements
	References


