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Abstract

We discuss bilinear embedding theorems for a certain class of Schrödinger operators on Lp . The obtained estimates are
dimension-free and linear in p. We outline a uniform proof of the theorem which relies on establishing three crucial properties
of the concrete Bellman function we consider. To cite this article: O. Dragičević, A. Volberg, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Fonction de Bellman et le plongement bilinéaire pour des opérateurs de Schrödinger. On considère un théorème de plonge-
ment bilinéaire pour une classe des opérateurs de Schrödinger sur Lp . Le résultat ne depend pas de dimension et il est p-linéaire.
On fait une esquisse de la démonstration basée sur trois observations concernant la fonction de Bellman spécifique. Pour citer cet
article : O. Dragičević, A. Volberg, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For n ∈ N let � = ∑n
j=1

∂2

∂x2
j

denote the usual Laplacian on R
n. Let V be a non-negative function defined on finite

real sequences and whose restriction to every R
n is measurable. By a slight abuse of notation we will use the same

letter to denote multiplication with V . In this sense introduce formally the operator L = −�+V , acting from C2
c (Rn).

We assume L admits a self-adjoint extension, also denoted by L; for a discussion on it see the monograph by Kato
[5, V §5]. By means of the spectral theorem we can define operator semigroup generated by L. Let Kt be the heat
kernel, i.e. the integral kernel associated to this semigroup. For precise definitions see [1, chapter 2].

We place the following conditions on V :
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(a) Kato’s inequality:

Kt (x, y) � C1t
− n

2 e− a
t
|x−y|2

and the kernel Kt is non-negative and uniformly integrable, i.e. for all (x, t) ∈ R
n × (0,∞),∫

Rn

Kt (x, y)dy � 1.

(b) Gradient estimates for the heat kernel:∣∣∣∣ ∂

∂xj

Kt (x, y)

∣∣∣∣ � C1t
− n+1

2 e− a
t
|x−y|2 and

∣∣∣∣ ∂

∂t
Kt (x, y)

∣∣∣∣ � C1t
− n

2 −1e− a
t
|x−y|2 .

(c) Let Pt denote the (Poisson) operator semigroup whose infinitesimal generator is L1/2. If g ∈ C∞
c then

lim
t→0

∫
Rn

∣∣∣∣t ∂Ptg

∂t
(x)

∣∣∣∣dx = 0 and lim
t→∞

∫
Rn

t
∂Ptg

∂t
(x)dx = 0.

(d) For any bounded, non-negative, compactly supported function ϕ and some C2 > 0 which does not depend on n,

∞∫
0

∫
Rn

Ptϕ(x)V (x)dx t dt � C2‖ϕ‖1.

The conditions which imply (a) were studied in [7], for example. In general there exists a large literature on heat
kernels and their estimates, e.g. [1]. The constants C1, a from the conditions (a) and (b) are allowed to be dependent
on n yet in Theorem 1.1 they still allow dimension-free estimates for general V as above.

For a given smooth C
N -valued function φ = (φ1(x, t), . . . , φN(x, t)) on R

n × (0,∞) denote

‖φ‖2∗ =
n∑

j=0

∣∣∣∣ ∂φ

∂xj

∣∣∣∣2

+ V (x)
∣∣φ(x, t)

∣∣2
,

where x0 = t . This is the same as ‖φ‖2∗ = ‖Jφ‖2
HS +V (x)|φ|2, where Jφ is the Jacobi matrix of φ and ‖ · ‖HS denotes

the Hilbert–Schmidt norm. The Lp norm of a C
N -valued test function ψ on R

n is of course (
∫

Rn ‖ψ(x)‖p

CN dx)1/p.

Also, denote by q the conjugate exponent of p and p∗ = max{p,q}.
The next inequality is our main result; we call it the bilinear embedding theorem.

Theorem 1.1. Let V satisfy properties (a)–(d). There is an absolute constant C > 0 such that for arbitrary natural
numbers M,N,n, any pair f : R

n → C
M and g : R

n → C
N of C∞

c test functions and any p > 1 we have

∞∫
0

∫
Rn

∥∥Ptf (x)
∥∥∗

∥∥Ptg(x)
∥∥∗ dx t dt � C(p∗ − 1)‖f ‖p‖g‖q .

The constant C only depends on the constant C2 from the property (d).

Theorems of this type we already proved in [3] and [4], where they gave rise to dimension-free estimates of Riesz
transforms associated to the Laplace, Ornstein–Uhlenbeck and Hermite operators. The constants were always of order
O(p), which seems to be sharp in all of these cases. Thus we believe our method offers a unified way of proving sharp
dimension-free Lp estimates for a vast array of Riesz transforms.
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2. Bellman function

Here we introduce the function whose special properties are fundamental for our way of proving Theorem 1.1.
These characteristics are stated in the theorem below; the proof was given in [4].

Throughout the section we assume that p � 2, q = p/(p − 1) and δ = q(q − 1)/8 are fixed. Observe that
δ ∼ (p − 1)−1. Take M,N ∈ N and define

Ω := {
(ζ, η,Z,H) ∈ C

M × C
N × R × R; |ζ |p < Z, |η|q < H

}
.

Consider the function B : Ω → [0,∞), defined as B = δ−1Q, where

Q(ζ,η,Z,H) = 2(Z + H) − |ζ |p − |η|q − δQ̃(ζ, η),

and

Q̃(ζ, η) =
⎧⎨
⎩

|ζ |2|η|2−q, |ζ |p � |η|q,
2

p
|ζ |p +

(
2

q
− 1

)
|η|q, |ζ |p � |η|q .

Function Q̃ is in C1(Ω) while its second derivatives only exist in the distributional sense. The Hessian matrix of Q,

denoted by d2Q, is a matrix-valued function which maps vector ω ∈ Ω into the matrix with entries ∂2Q
∂α∂β

(ω), where α

and β range over ζj , ζj , ηk, ηk,Z,H for j = 1, . . . ,M , k = 1, . . . ,N .

Theorem 2.1. Let ω = (ζ, η,Z,H) ∈ Ω . Then

(i) B(ω) � 16(p − 1)(Z + H).

There exists τ = τ(|ζ |, |η|) > 0 such that

(ii) −d2B(ω) � τ |dζ |2 + τ−1|dη|2;
(iii) B(ω) − dB(ω)ω � τ |ζ |2 + τ−1|η|2.

To clarify the notation let us say that by (ii) we mean that 〈−d2B(ω)w,w〉 � τ |w1|2 + τ−1|w2|2 for all w =
(w1,w2,w3,w4) ∈ C

M × C
N × R × R.

Function B stems from the work of F. Nazarov and S. Treil [6]. Their B was a function of four non-negative
variables. For such B they proved another version of (ii), namely −d2B(ω) � 2|dζ ||dη|. It turned out, as stated in
Theorem 2.1, that this property can be strengthened and also carried without loss from the “scalar” to the “vector”
case. But the most unexpected fact is that (iii) can be added to the list of properties of B . It appears Nazarov and Treil
did not study anything like this, nor does (iii) seem to follow from (i) and (ii). It was thus a considerable surprise for
us to see that (iii) is nevertheless also true, not the least since we can prove it with the same τ as in (ii), which is
essential for applying B in the proof of Theorem 1.1.

The provenance of the need to study properties (ii) and especially (iii), crucial for successful uniform treatment of
the operators with potential, is explained by the identity (1) below. The first such operator we studied was the Hermite
operator [4], i.e. the case of V (x) = |x|2. But it is clear from (1) that, owing to the properties of B , the lower estimates
of Theorem 1.1 can be obtained regardless of the nature of V .

3. Sketch of the proof of Theorem 1.1

Let us briefly outline why we needed the assumptions (a)–(d) and how we merged them with Bellman function.
Given test functions f,g on R

n we want to define v(x, t) := (Ptf (x),Ptg(x),Pt |f |p(x),Pt |g|q(x)) and furthermore
b := B ◦ v, that is,

b(x, t) := B
(
Ptf (x),Ptg(x),Pt |f |p(x),Pt |g|q(x)

)
.

The existence of Kt (x, ·) as in (a) settles the definition of v. As for b, one has to ascertain that v(x, t) ∈ Ω . This again
follows from (a).



540 O. Dragičević, A. Volberg / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 537–540
Consider the operator L′ defined for test functions on R
n × (0,∞) as L′ = L − ∂2/∂t2. Our aim is to estimate the

integral

∞∫
0

∫
Rn

L′b(x, t)dx t dt

from below and above. Note that L′Ptϕ = 0. From here the chain rule immediately gives

L′b(x, t) =
n∑

j=0

〈
−d2B(v0)

∂v

∂xj

(x, t),
∂v

∂xj

(x, t)

〉
+ V (x)

[
B(v0) − dB(v0)v0

]
. (1)

Here we wrote v0 = v(x, t) and when j = 0 we meant the differentiation in t . Now the inequalities (ii) and (iii) quickly
imply L′b(x, t) � ‖Ptf (x)‖∗‖Ptg(x)‖∗. The formula (1) reveals, in retrospect, why those two properties of B were
sought out in the first place.

As to the estimates from above, we first show that
∫

�b(x, t)dx t dt = 0. This is done by means of the integration
by parts, so that the integrals of ∂2b/∂x2

j are reduced to those of ∂b/∂xj . To handle these terms we need to esti-
mate xj -derivatives of Kt (x, ·) and the ζ, η-derivatives of B . The former are supplied by (b), while the latter can be
calculated explicitly:∣∣∣∣∂B

∂ζ

∣∣∣∣ � C(p)max
{|ζ |p−1, |η|} and

∣∣∣∣∂B

∂η

∣∣∣∣ � C(p)|η|q−1. (2)

Thus we prove that
∫

L′b = − ∫
∂2b/∂t2 + ∫

V · b. The combination of (i) and (d) implies
∫

V · b is majorized by
C(p − 1)(‖f ‖p

p + ‖g‖q
q). Finally, to estimate

∫
∂2b/∂t2 we again integrate by parts. Four terms emerge, of which

the non-trivial to estimate are lim inft→0 t
∫

Rn ∂b(x, t)/∂t dx and − lim supt→∞ t
∫

Rn ∂b(x, t)/∂t dx. Recalling once
again that b = B ◦ v and that v comprises of the extensions Ptϕ, the estimates are reduced to the Poisson-kernel (and,
by the subordination formula, the heat-kernel) estimates, i.e. precisely to (a)–(c).

To summarize, we get
∫ ‖Ptf (x)‖∗‖Ptg(x)‖∗ �

∫
L′b � C(p − 1)(‖f ‖p

p + ‖g‖q
q). Finally we replace f by λf ,

g by λ−1g and take minimum in λ > 0.

Remark 1. It seems feasible that the same Bellman function could be applied to obtain counterparts to the results
in this paper but associated to the Laplacian on a Gaussian space. For a recent investigation of perturbations of the
Gaussian Laplacian we refer the reader to [2].
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