Dans cet article, nous déterminons l'espérance du polynôme de courbure d'une variété projective réelle qui est donnée comme ensemble de zéros de polynômes aléatoires, avec une distribution gaussienne qui est invariante par le groupe orthogonal. En particulier, nous explicitons la caractéristique d'Euler de telles variétés projectives réelles aléatoires. Ces résultats généralisent considérablement la connaissance du nombre de zéros, du volume, et de la caractéristique d'Euler, des ensembles de zéro des systèmes de polynômes aléatoires.
We determine the expected curvature polynomial of real projective varieties given as the zero set of independent random polynomials with Gaussian distribution, which is invariant under the orthogonal group. In particular, the expected Euler characteristic of such random real projective varieties is found. This considerably extends previously known results on the number of roots, the volume, and the Euler characteristic of the real solution set of random polynomial equations.
Accepté le :
Publié le :
@article{CRMATH_2007__345_9_507_0, author = {B\"urgisser, Peter}, title = {Average {Euler} characteristic of random real algebraic varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {507--512}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.10.013}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2007.10.013/} }
TY - JOUR AU - Bürgisser, Peter TI - Average Euler characteristic of random real algebraic varieties JO - Comptes Rendus. Mathématique PY - 2007 SP - 507 EP - 512 VL - 345 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2007.10.013/ DO - 10.1016/j.crma.2007.10.013 LA - en ID - CRMATH_2007__345_9_507_0 ER -
%0 Journal Article %A Bürgisser, Peter %T Average Euler characteristic of random real algebraic varieties %J Comptes Rendus. Mathématique %D 2007 %P 507-512 %V 345 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2007.10.013/ %R 10.1016/j.crma.2007.10.013 %G en %F CRMATH_2007__345_9_507_0
Bürgisser, Peter. Average Euler characteristic of random real algebraic varieties. Comptes Rendus. Mathématique, Tome 345 (2007) no. 9, pp. 507-512. doi : 10.1016/j.crma.2007.10.013. http://www.numdam.org/articles/10.1016/j.crma.2007.10.013/
[1] The Gauss–Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc., Volume 53 (1943), pp. 101-129
[2] On the roots of a random system of equations. The theorem on Shub and Smale and some extensions, Found. Comput. Math., Volume 5 (2005) no. 2, pp. 125-144
[3] Average volume, curvatures, and Euler characteristic of random real algebraic varieties (Preprint, Arxiv October 2006) | arXiv
[4] On the kinematic formula in integral geometry, J. Math. Mech., Volume 16 (1966), pp. 101-118
[5] Curvature measures, Trans. Amer. Math. Soc., Volume 93 (1959), pp. 418-491
[6] The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., Volume 106 (1993) no. 509, p. vi+69
[7] On the distribution of roots of random polynomials, The Work of Smale in Differential Topology, From Topology to Computation: Proceedings of the Smalefest, Springer, 1993, pp. 419-431
[8] High probability analysis of the condition number of sparse polynomial systems, Theoret. Comput. Sci., Volume 315 (2004) no. 2–3, pp. 524-555
[9] The expected number of real roots of a multihomogeneous system of polynomial equations, Amer. J. Math., Volume 124 (2002) no. 1, pp. 49-73
[10] On Chern's kinematic formula in integral geometry, J. Differential Geometry, Volume 9 (1974), pp. 475-482
[11] The mean value of the Euler characteristic of an algebraic hypersurface, Algebra i Analiz, Volume 11 (1999) no. 5, pp. 185-193 (English translation St. Petersburg Math. J., 11, 5, 2000, pp. 853-860)
[12] On the average number of real roots of certain random sparse polynomial systems, Park City, UT, 1995 (Lectures in Appl. Math.), Volume vol. 32, Amer. Math. Soc., Providence, RI (1996), pp. 689-699
[13] Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., Reading, MA, 1976
[14] Complexity of Bézout's theorem II: volumes and probabilities (Eyssette, F.; Galligo, A., eds.), Computational Algebraic Geometry, Progress in Mathematics, vol. 109, Birkhäuser, 1993, pp. 267-285
[15] Euler characteristics for Gaussian fields on manifolds, Ann. Probab., Volume 31 (2003) no. 2, pp. 533-563
[16] On the volume of tubes, Amer. J. Math., Volume 61 (1939) no. 2, pp. 461-472
[17] On the Kostlan–Shub–Smale model for random polynomial systems. Variance of the number of roots, J. Complexity, Volume 21 (2005) no. 6, pp. 773-789
Cité par Sources :