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Abstract

We establish that the components of the linearized change of metric and change of curvature tensors associated with a displace-
ment field of a surface in R3 must satisfy compatibility conditions, which are the analogues ‘on a surface’ of the Saint Venant
equations in three-dimensional elasticity.

‘We next show that, conversely, if two symmetric matrix fields of order two satisfy these compatibility conditions over a simply-
connected surface S C R3, then they are the linearized change of metric and change of curvature tensors associated with a
displacement field of the surface S. 7o cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Reconstruction d’un champ de déplacements d’une surface a partir de ses tenseurs linéarisés de changement de métrique
et de changement de courbure. On montre que les composantes des tenseurs linéarisés de changement de métrique et de change-
ment de courbure associés a un champ de déplacements d’une surface de IR3 doivent satisfaire certaines relations de compatibilité,
qui sont les analogues « sur une surface » des relations de Saint Venant en élasticité tri-dimensionnelle.

On montre ensuite que, inversement, si deux champs de matrices symétriques d’ordre deux satisfont ces mémes relations de
compatibilité sur une surface S C R3 simplement connexe, alors ce sont les tenseurs linéarisés de changement de métrique et de
changement de courbure d’un champ de déplacements de la surface S. Pour citer cet article : P.G. Ciarlet et al., C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Les notations et définitions utilisées ici sont précisées dans la version anglaise. Le résultat principal de cette Note est
le suivant (Théoréme 3.1 de la version anglaise) : Soit & un domaine simplement connexe de R? et soit 8 € C3(; R?)
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une immersion. Soit par ailleurs (yupg) € L?(w; S?) et (pap) € L?(w; S$?) deux champs de matrices symétriques qui
satisfont au sens des distributions les équations de Saint Venant sur la surface S = 0(w), a savoir :

Yoa|Bt + YiBlac — Vral|Bo — YoBlat + R.‘Zmryﬂv - R.ljggryau = brotpaﬁ + baﬁpra - bac{prﬁ - brﬂpaaa
Poalt — Pralc = b(‘; (Vav|r + Vevle — sz\v) - b?()’avla + Vovle — Vaa\v)-

Alors il existe un champ de vecteurs § = n;a’ € H'(w; R?) tel que

1
Yop = 5(80[17 -ag +ay - 0gn) dans Lz(w),
Pap = (upn — Typdym) -2y dans H™' ().

Autrement dit, les champs (yupg) et (oug) sont les champs de tenseurs linéarisés de changement de métrique et
de changement de courbure associés au champ de déplacements n de la surface S. La démonstration de ce résultat
est constructive, dans le sens qu’elle fournit un algorithme explicite de construction du champ 75 a partir des champs
(Yap) €t (pup)-

Ce résultat peut étre vu comme la « version infinitésimale » de la construction d’une surface a partir de ses deux
formes fondamentales, car les équations de Saint Venant sur une surface (qui constituent une condition nécessaire si le
champ 5 est donné ; cf. Théoreme 2.1 de la version anglaise), ne sont autres que la partie « du premier ordre en ¢ » des
équations de Gauss et Codazzi—Mainardi associées a I’immersion (0 + e7) pour |¢| suffisament petit (Théoreme 4.3
de la version anglaise).

On trouvera dans [3] les démonstrations détaillées de ces résultats, ainsi que divers compléments, notamment
I’application de ces résultats a la justification de la théorie «intrinseque » des coques (cf. [2]).

1. Notations and preliminaries

Latin indices and exponents vary in the set {1, 2, 3}, Greek indices and exponents vary in the set {1, 2}, and the
summation convention with respect to repeated indices and exponents is systematically used in conjunction with this
rule.

The Euclidean inner product and the vector product of u, v € R? and the Euclidean norm of u € R? are respectively
denoted by u - v, u A v, and |u|. The notation (7,) designates the matrix in M2 with Iqp as its elements, the first index
« being the row index. The symbols S?, S2>, and A? respectively designate the sets of all symmetric, positive-definite
symmetric, and antisymmetric, matrices of order two.

Let w be an open subset of R%. The coordinates of a point y € w are denoted y, and we let 9y := 9/dx, and
dup i= 02/0y4dyp.

A domain in R? is a bounded and connected open set with a Lipschitz-continuous boundary, the set o being locally
on the same side of its boundary. In what follows, we will need the following generalization of Poincaré’s theorem
(which is classically proved only for continuously differentiable functions), which is due to Ciarlet and Ciarlet, Jr. [1]:

Theorem 1.1. Let w be a simply-connected domain of R?. Let ho € H™(w) be distributions that satisfy
dghg = duhp in H ().
Then there exists a function p € L*(w), unique up to an additive constant, such that

he =84p in H ().

We now list the various definitions and properties from the differential geometry of surfaces in R? that are needed
in the detailed proofs of the theorems stated in this Note.

Let @ be a bounded open subset of R2 and let 0 € C3(&; R?) be an immersion. Then the image S :=0(w) is a
surface immersed in R3. For each y € @, the vectors ay (y) := 9,0 (y) form a basis in the tangent space to the surface
0 (w) at the point @ (y). The tangent vector fields a?, defined by a,(y) - af(y) = 85 for all y € w, form the dual bases.
A unit normal vector to S at 6(y) is defined by

. MO Am0)
BN =20 =1 A a0
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The covariant components of the first fundamental form of § are defined by aqg(y) = a4 (y) - ag(y) forall y € o,
and the contravariant components of the same form are defined by a®f(y) = a%(y) - aP(y), or equivalently, by
(a*P () = (a(,,(y))’l, for all y € @. The covariant components of the second fundamental form of S are defined
by bug(y) = —04a3(y) - ag(y) = d,ag(y) - a3(y) for all y € @, and the mixed components of the same form are de-
fined by b}, = —d,a3(y) - a’(y) = d,a*(y) - a3(y) for all y € w, or equivalently, by b} = a’ﬂbaﬁ for all y € @. The
Christoffel symbols are defined by

T:=la”(8a + 0gagy — Ovagp) =TIy, ino.
af ) alBy BUav vdap Ba

The two fundamental forms satisfy the Gauss and Codazzi-Mainardi equations:
R! o: =brab) —bgeb, and  sbry — dcboo + Iloboy — I, bry =0,

‘XoT
where
RV

‘oHoT

=0y Y, — 8, ) + AT — T Ty

Tat op oot T

are the mixed components of the Riemann curvature tensor associated with the metric (aqg).
The covariant derivatives ny|g € L?(w) of a 1-covariant tensor field with components 1, € H L(w) are defined by

Nalp = 0pnNa — Lgg M-
The covariant derivatives Togjo € H ~!(w) of a 2-covariant tensor field with components Typ € L?(w) are defined
by Toglo =05 Tap — I3y Top — F;/gTav'
The covariant derivatives Togo|r € H ’2(a)) of a 3-covariant tensor field with components Tyg, € H -1 (w) are
defined by
Taﬁalr = aTTO(ﬂ(T - FfvaTan - Ff‘}j Tyvo — F‘[vg' Taﬂv~
The Codazzi—Mainardi equations are equivalently expressed in terms of the covariant derivatives as byg|r = barlo
or equivalently, as b5 |, = b¥|,, where the covariant derivatives b |, are defined by b5 |, := 9. b% — rk bz + Fr"‘ubg .
The second-order covariant derivatives y|or € H ~1(w) of a 1-covariant tensor field with components 1y € H Yw)
are defined by n¢|o7 := 0t Nl — IPyMvie — I3 Najv, and they satisfy the Ricci identities
Nalot — Najto = R.'fm,nu.
The second-order covariant derivatives Tygjor € H ’2(a)) of a 2-covariant tensor field with components Tyg €
L?(w) are defined by
Tapior = 0:Tupic — I7o Topio — IipTavic — 176 Tapiv-
and they satisfy the Ricci identities

Taﬁlar — LaBlto = R-lgartT//-ﬁ + R%OTTQI‘L‘

Detailed proofs of the results announced in this Note are given in [3].
2. Saint Venant equations on a surface

Let be a bounded open subset of R? and let @ € C3(@; R?) be an immersion. The vector fields a; € C2(&; R3)
and a’ € C?(@; R?) are defined as in Section 1. With every vector field § € H!(w; R?), we associate the linearized
change of metric tensor field (y,g(n)), defined by

1
Yap(n) = 5 (3 -ap +2a - Ip7) = Vpa ().
and the linearized change of curvature tensor field (oq8(1)), defined by

Pap () := (dapn — Typdvn) - a3 = ppa(1).

Note that yes (1) € L?(w) and pag(n) € H™ ! (w).

The next theorem shows that these tensors necessarily satisfy specific compatibility relations, which constitute the
Saint Venant equations on a surface. The proof rests on careful computations (all of which need to be justified in the
sense of distributions), which notably use the Ricci identities and the Gauss equations.
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Theorem 2.1. The linearized change of metric tensor (vug) = (Yap(n)) € L*(w; S?) and the linearized change of
curvature tensor (pug) = (pap(M)) € H! (w; S?) associated with a vector field n € H! (w; R3) necessarily satisfy

Yoa|Bt + YiBlac — Vra|Bo — YoBlat + R-‘iyo“[yﬁv - R.];ggryow = brapaﬂ + baﬁpra - baoc:orﬂ - brﬂpaa’
Poalt — Praje = b; Yavir + Vovia — Yrap) — b?()’avla + Yovia — Yoalv)

in the distributional sense.
3. Recovery of a vector field from its linearized change of metric and change of curvature tensors

We now characterize those symmetric matrix fields (yg) and (oqp) that together satisfy the Saint Venant equations
on a surface:

Theorem 3.1. Let w be a simply-connected domain in R? and let 0 € C?(&o; R3) be an immersion. Let there be given
two symmetric matrix fields (yop) and (pup) in the space L*(w; S?) that together satisfy in the distributional sense
the Saint Venant equations on a surface (Theorem 2.1).

Then there exists a vector field § € H' (w; R3) such that

1 .
Vap = 5 Bl - ag + 20 - p7)  in L*(),
pop = Bupn — Togdyn) -a3  in H' ().

Sketch of proof. The proof comprises three steps. One first shows that the Saint Venant equations on a surface imply
that the system

Agglo + bachg —bgora = VYopla — VoulB:
Aalo + b;)‘«av = Poa — b; Yav

has a solution (Ayg) € L?(w; A?) and (Ay) € L?(w; R?). To this end, one uses a series of careful computations, coupled
with an application of Poincaré’s theorem in its weak form (Theorem 1.1).

Second, one shows that the symmetry of the matrix fields (yug) and (png) imply that there exists a solution
n € H'(w; R3) to the system

dal = (Vup + rap)a’ +1qa’.

The existence of such a vector field # is again obtained by an application of Poincaré’s theorem in its weak form.

Finally, one shows that the symmetry of the matrix fields (yyg) and (pgg), together with the antisymmetry of
the matrix fields (Ayg), imply that the vector field # is indeed related to the tensors (yug) and (pug) as indicated in
the statement of the theorem. This part involves straightforward computations, which notably use the well-known
relations dpa” = —1I7 al + bga3. O

Note that the uniqueness result established in Ciarlet and C. Mardare [4, Theorem 3] shows that any vector field
i € H'(w; R3) that satisfies
| O
Yap = 5(30471 -ag +ag - 0pn) in L7 (w),
Pap = (Bupil — Tapdyi)) -a3 in H (),
is necessarily of the form
i1(y)=n(y)+ (a+bAb(y) foralmostall y€w,

where a and b are vectors in R3.
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4. The linearized Gauss and Codazzi-Mainardi equations

We now show that the Saint Venant equations on a surface are nothing but an infinitesimal version of the Gauss and
Codazzi—Mainardi equations. These equations are recalled in the next theorem, which is a straightforward extension
of a well-known result for smoother immersions 8 € C3(&; R3).

Theorem 4.1. Let w be a domain in R?, let 0 € Wli’cp (w; R3) be an immersion, and let the matrix fields (agp) €
WP (0; S2) and (bep) € LY (0 S?), p > 2, be defined by
Gop =8y -ag and byg =085 33 inw,

where
ay Nay
Ay :=0,0 and az=——.
lap A ag|
Then the functions ageg and byg together satisfy the Gauss and Codazzi-Mainardi equations in the distributional
sense, viz.,

Rigor =001y — 0 Iy + FotwrF;a - Fawapt/])}r =byrby —bacby in D' (w),
05 bar — 0cboao + by — Tibu: =0 in D (w). €Y

As shown in Theorem 9 in S. Mardare [5], the converse of Theorem 4.1 is also true:

Theorem 4.2. Let w be a connected and simply-connected open subset of R* and let aep € Wll{cp (w; Si) and byg €

Wli)’cp (w; S?), p > 2, be two matrix fields that satisfy the Gauss and Codazzi-Mainardi equations (Theorem 4.1) in
the distributional sense.

. . . 2
Then there exists an immersion 6 € Wlo’cp (w; R3) such that

Gop =8y -ag and byg =048 -33 inw,

where
ay Nay
Ay :=0,0 and ay:=——.
la; A ag|

Our last objective is to show that Theorems 2.1 and 3.1 are in fact ‘infinitesimal’ versions of Theorems 4.1 and 4.2,
respectively. To this end, we will show that the Saint Venant equations on a surface coincide with the linearized Gauss
and Codazzi—Mainardi equations:

Theorem 4.3. Let w be an open subset of R* and let 6 € C3(&; R>) be an immersion. For some p > 2, let there be
given symmetric matrix fields (vug) € Wli)’cp (w; S?) and (pap) € L{;C (w; S?) such that the matrix fields (agg + €Vap)
and (bug + €pap) satisfy the Gauss and Codazzi—-Mainardi equations for |e| > 0 small enough.

Then the linear part with respect to ¢ in the Gauss and Codazzi—-Mainardi equations associated with the matrix

fields (aqp +€yup) and (byg +€pap) coincide with the Saint Venant equations on the surface S = 0(w) (Theorem 2.1).

Sketch of proof. It suffices to prove that the linearized Gauss and Codazzi—-Mainardi equations coincide with the
Saint Venant equations on every compact subset of w. Hence we may assume that (yug) € wlr (w; Sz) and (pug) €
LP(w; S?). For all &, define the matrix fields

(a0p () := (aup) + &(vup) € WP (w; S?),
(ba,g (8)) = (bap) + €(pap) € L (a); Sz).

Since W"p(a)) C Co(c?)) by the Sobolev embedding theorem, there exists a number gy > 0 such that, for all 0 <
le| < eo, the matrix field (aqg(e)) is positive definite in @. This implies that a°7 (¢) € WP (w), where (a°F (g)) =
(aup (¢))~!. Hence the Christoffel symbols

1
I'ygos (e) = E{aaaoﬁ(f‘f) + aﬂaacr (&) — aaaaﬁ(g)} and FJ;}(S) =a"’ (S)Faﬂa (&)
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and the mixed components b}, (¢) = a™® bup(¢) of the second fundamental form all belong to the space L”(w). This
property implies that the Gauss and Codazzi-Mainardi equations associated with the two fields (aqg(¢)) and (beg(€))
are well defined in the space of distributions.

With self-explanatory notations, the Gauss and Codazzi—Mainardi equations assert that, for all |¢| small enough,

RE (&) = bar (£)bE (8) — bao (€)DF (e),
05byr(8) — 0rbgq (&) + Fauf (S)b/w () — Falfy (s)b/l.‘[(s) =0.

In order to compute the linear part of the Gauss and Codazzi—Mainardi equations associated with the fields (aqg(€))
and (bqp(e)), we thus proceed by expanding all the above functions as power series in &, taking into account that the
fields (aqp) and (byp) also satisfy the Gauss and Codazzi—Mainardi equations in w. This part of the proof essentially
rests on a fairly lengthy series of careful computations, involving in particular the Ricci identities. O

Note that, in Theorem 4.3, the field (y,g) belongs to the space Wlh’cp (w; S?), so0 as to guarantee that (aqg(e)) €

le)’cp (w; S?), which is the minimal regularity assumption under which the Riemannian curvature tensor Rgyoz(€) is
well defined in the space of distributions. By contrast, the Saint Venant equations can be extended by continuity to
matrix fields (yup) that belong only to the space Lfoc(a); S?).

In [3], we also show how the results of this Note can be used to explicitly describe, and mathematically justify, an

intrinsic theory of linearly elastic shells; cf. [2].
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