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Abstract

We derive a two-dimensional model for elastic plates as a Γ -limit of three-dimensional nonlinear elasticity with the constraint of
incompressibility. The energy density of the reduced problem describes plate bending, and is determined from the elastic moduli at
the identity of the energy density of the three-dimensional problem. Without the constraint of incompressibility, Γ -convergence to
a plate theory was first derived by Friesecke, James and Müller. The main difficulty in the present result is the construction of a re-
covery sequence which satisfies pointwise the nonlinear constraint of incompressibility. To cite this article: S. Conti, G. Dolzmann,
C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Dérivation de la théorie non-linéaire des plaques avec la contrainte de l’incompressibilité. Nous dérivons un modèle
bidimensionnel pour les plaques élastiques comme Γ -limite de la théorie de l’élasticité tridimensionnelle avec contrainte d’in-
compressiiblité. La densité d’énergie du problème réduit est déterminée à partir des modules d’élastiques de la densité d’énergie
tridimensionnelle à l’identité. Sans contrainte d’incompressibilité, Friesecke, James et Müller sont les premiers à avoir rigou-
reusement justifié le modèle de plaque en flexion par Γ -convergence. La difficulté principale de l’extension de ce résultat au
cas incompressible réside dans la construction, afin d’établir l’inégalité de Γ -limsup, d’une suite de déformations satisfaisant la
contrainte non-linéaire d’incompressibilité. Pour citer cet article : S. Conti, G. Dolzmann, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the past decade mathematical tools have been developed to derive in a rigorous way two-dimensional reduced
models from the variational problem of three-dimensional nonlinear elasticity. The fundamental notion of convergence
in this context is the concept of Γ -convergence for functionals as introduced by De Giorgi [7], see also [6,1].

A number of results for various theories including plate, shell, and membrane theories have been obtained in [12,
13,15,11,9,16,10] (see also the references therein). In all these results, the free energy density is assumed to be smooth
on an open set in the space of deformation gradients. This assumption excludes for example the important class of
rubber-like materials for which the energy density incorporates an incompressibility constraint, in the sense that the
energy is infinite for all deformation gradients F that do not satisfy the nonlinear condition detF = 1. A membrane
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theory for incompressible materials was derived independently by Trabelsi [17,18] and by the authors [5] and is
relevant, for example, in the analysis of soft elasticity in thin sheets of nematic elastomers [19,8,3,20].

We focus here on the derivation of a plate theory for incompressible materials. A plate theory was first formu-
lated by Kirchhoff back in 1850; more recent justifications are based on asymptotic expansion [2]. A derivation
of Kirchhoff’s plate theory without a priori assumptions was obtained in 2002 by Friesecke, James and Müller via
Γ -convergence [11,9]. Their derivation holds for arbitrary energy densities, with quadratic growth from below, and
C2-smoothness in a neighborhood of the minimum. Under an additional a priori assumption on the smallness of the
nonlinear strain the result was derived by Pantz [15,16]. In this paper, we address the incompressible case, where
the energy density is finite and smooth only on a subset of the manifold of volume-preserving deformation gradi-
ents. Analogously to the membrane case, the main difficulty lies in the construction of a low-energy sequence of
deformations which satisfy the incompressibility constraint pointwise.

We consider a thin elastic sheet of cross-section ω ⊂ R
2, and thickness h > 0. The nonlinear elastic energy is given

by the functional Ih :W 1,2(ω × (0, h);R
3) → [0,∞] defined through

Ih[u] = 1

h3

∫
ω×(0,h)

W(∇u)dx dx3 (1)

where we write x = (x1, x2) for the in-plane variables. In turn, the energy density W : M3×3 → [0,∞] is defined as

W(F) =
{

W0(F ) if detF = 1,

∞ else.
(2)

Here W0 : M3×3 → [0,∞] is frame indifferent, in the sense that W0(QF) = W0(F ) for all Q ∈ SO(3). Moreover
W0(F ) = 0 if F ∈ SO(3), W0(F ) > 0 if F /∈ SO(3), W0 is C2 smooth in a neighborhood of the 3 × 3 identity matrix
Id3, and satisfies standard quadratic growth from below,

1

c
|F |2 − c � W0(F ), for some c > 0. (3)

The limiting theory describes only the deformation of the mid-plane of the sheet, v :ω → R
3. Further, as usual in

plate theories, the limiting functional is finite only on isometries, i.e., only on maps v such that ∇v ∈ O(2,3) a.e.,
where O(2,3) = {F ∈ M

3×2: F TF = Id2}, Id2 being the 2 × 2 identity matrix.
The limiting energy of such an isometry is given by its bending energy, and depends on the second fundamental

form IIv: ω → M
2×2,

IIv = (∇v)T∇bv, bv = ∂1v ∧ ∂2v. (4)

Here bv is the normal to the surface described by v (notice that, v being an isometry, bv is a unit vector).
The limiting energy can be expressed via the elastic coefficients of the three-dimensional energy density. Consider

the Hessian of W0,

Q3 = ∇2W0(Id3), (5)

which we view as a quadratic form on M
3×3. We show that the effective two-dimensional bending moduli are obtained

by minimization of Q3 in the out-of-plane direction, subject to the (linearized) incompressibility constraint. Precisely,
let Q2 be the quadratic form on M

2×2 defined by

Q2(G) = min
{
Q3(G|d): d ∈ R

3, Tr(G|d) = 0
}
, (6)

where (G|d) is the 3 × 3 matrix whose first two-by-two block is given by G ∈ M
2×2, the third column by d ∈ R

3, and
the remaining entries are zero.

We obtain that the limiting functional is given by

J [v] =

⎧⎪⎨
⎪⎩

1

24

∫
ω

Q2(IIv)dx if v ∈ W 2,2(ω;R
3), with ∇v ∈ O(2,3) a.e.,

(7)
∞ else.



S. Conti, G. Dolzmann / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 541–544 543
The appropriate notion of convergence for deformation fields is, as usual for plates [9], strong convergence in
W 1,2(ω × (0,1);R

3) of the rescaled deformations

U(x,x3) = u(x,hx3) for x ∈ ω and x3 ∈ (0,1). (8)

For the limiting map v :ω → R
3 the rescaling reduces to V (x, x3) = v(x).

Theorem 1. Let ω be a bounded, convex Lipschitz domain in R
2, and suppose that W satisfies (2), (3). Then the

following assertions hold:

(i) (Compactness) For every sequence hj → 0, and every sequence uj ∈ W 1,2(ω × (0, hj );R
3) such that Ihj

[uj ] <

C < ∞, there exists a v ∈ W 2,2(ω;R
3), with ∇v ∈ O(2,3) a.e., and a subsequence such that

Ujk
− 1

|ω|
∫

ω×(0,1)

Ujk
dx dx3 → V in W 1,2(ω × (0,1);R

3)

where Uj and V are related to uj and v by (8).
(ii) (Lower bound) If the sequence uj satisfies in addition Uj → V in W 1,2, then

lim inf
j→∞ Ihj

[uj ] � J [v].

(iii) (Upper bound) For any v ∈ W 2,2(ω;R
3) with ∇v ∈ O(2,3) a.e., and any sequence hj → 0 there is a sequence

uj ∈ C∞(ω × (0, hj );R
3) such that Uj → V in W 1,2 and

lim sup
j→∞

Ihj
[uj ] � J [v].

To prove (i) and (ii), we consider the energies

Wk(F) = W0(F ) + 1

2
k(detF − 1)2, (9)

and let, analogously to (5) and (6),

Qk
3(F ) = ∇2Wk(Id3)(F,F ) = Q3(F ) + k(TrF)2, Qk

2(G) = min
{
Qk

3(G|d): d ∈ R
3}. (10)

The result of [9] and the fact that Wk � W imply compactness (and hence (i)) and that if Uj → V then

lim inf
j→∞ Ihj

[uj ] �

⎧⎪⎨
⎪⎩

1

24

∫
ω

Qk
2(IIv)dx if ∇v ∈ W 1,2(ω;O(2,3)

)
,

∞ else.

for all k > 0.

Taking k → ∞, we have Qk
2 → Q2, and (ii) is proven.

To prove (iii) one needs to approximate v in energy by a sequence uj such that det∇uj = 1 everywhere. The first
step is an approximation result by Pakzad [14]. He has shown that, on convex domains, any W 2,2 isometry can be
approximated, in W 2,2, by smooth isometries. Therefore it suffices to consider the case of smooth u. We define

u(x, x3) = v(x) + ϕ(x, x3)bv(x) + 1

2
ϕ(x, x3)

2d(x). (11)

The function ϕ is chosen so that ϕ(x,0) = 0 and det∇u = 1 everywhere. For smooth v and d , this can be done
on a domain of the form ω × (−δ, δ), see [17,18,5]. The function d :ω → R

3 is chosen by a suitable smoothing of
the optimal d entering (6), for G = IIv . Finally, uj (x, x3) = u(x, x3 − hj/2). The estimate of the energy is, in turn,
analogous to the one in [9]. Details will be presented elsewhere [4].
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