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Abstract

We study the flow map associated to the cubic, defocusing, Schrödinger equation in space dimension at least three. We consider
initial data of arbitrary size in Hs , where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent
of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of
super-critical geometric optics: the creation of oscillation, and the ghost effect. To cite this article: R. Carles, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur l’instabilité pour l’équation de Schrödinger avec non-linéarité cubique. Nous étudions l’équation de Schrödinger cu-
bique défocalisante en dimension d’espace au moins trois. Pour des données initiales de taille quelconque dans Hs , 0 < s < sc, où
sc est l’indice critique, nous considérons des perturbations dans Hσ , avec σ < sc indépendant de s. On montre une instabilité dans
des espaces de Sobolev d’ordre inférieur à s. La preuve repose sur une analyse de type optique géométrique en régime sur-critique.
Pour citer cet article : R. Carles, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the Cauchy problem for the cubic, defocusing Schrödinger equation:

i∂tψ + 1

2
�ψ = |ψ |2ψ, x ∈ R

n; ψ|t=0 = ϕ. (1)

Formally, the mass and energy associated to this equation are independent of time:

Mass: M[ψ](t) =
∫
Rn

∣∣ψ(t, x)
∣∣2 dx ≡ M[ψ](0) = M[ϕ],

Energy: E[ψ](t) =
∫
Rn

∣∣∇ψ(t, x)
∣∣2 dx +

∫
Rn

∣∣ψ(t, x)
∣∣4 dx ≡ E[ψ](0) = E[ϕ].
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Scaling arguments yield the critical value for the Cauchy problem in Hs(Rn): sc = n/2 − 1. Assume n � 3, so that
sc > 0. It was established in [3] that (1) is locally well-posed in Hs(Rn) if s � sc . On the other hand, (1) is ill-
posed in Hs if s < sc ([4]). Moreover, the following norm inflation phenomenon was proved in [4] (see also [1,2]): if
0 < s < sc , we can find (ϕj )j∈N in the Schwartz class S(Rn) with

‖ϕj‖Hs −→
j→+∞ 0, (2)

and a sequence of positive times τj → 0, such that the solutions ψj to (1) with initial data ϕj satisfy:∥∥ψj (τj )
∥∥

Hs −→
j→+∞+∞.

In [2], this was improved to: we can find tj → 0 such that

∥∥ψj (tj )
∥∥

Hk −→
j→+∞+∞, ∀k ∈

]
s

1 + sc − s
, s

]
.

Note that (2) means that we consider the flow map near the origin. We show that inside rings of Hs , the situation is
yet more involved: for data bounded in Hs , with 0 < s < sc, we consider perturbations which are small in Hσ for any
σ < sc , and infer a similar conclusion.

Theorem 1.1. Let n � 3 and 0 � s < sc = n
2 − 1. Fix C0, δ > 0. We can find two sequences of initial data (ϕj )j∈N and

(ϕ̃j )j∈N in the Schwartz class S(Rn), with:

C0 − δ � ‖ϕj‖Hs , ‖ϕ̃j‖Hs � C0 + δ; ‖ϕj − ϕ̃j‖Hσ −→
j→+∞ 0, ∀σ < sc,

and a sequence of positive times tj → 0, such that the solutions ψj and ψ̃j to (1), with initial data ϕj and ϕ̃j

respectively, satisfy:

∥∥ψj (tj ) − ψ̃j (tj )
∥∥

Hk −→
j→+∞+∞, ∀k ∈

]
s

1 + sc − s
, s

]
(if s > 0), lim inf

j→+∞
∥∥ψj (tj ) − ψ̃j (tj )

∥∥
H

s
1+sc−s

> 0.

The main novelty in this result is the fact that the initial data are close to each other in Hσ , for any σ < sc . In
particular, this range for σ is independent of s.

Remark 1. As in [1,2], we consider initial data of the form

ϕj (x) = jn/2−sa0(jx),

for some a0 ∈ S(Rn) independent of j . The above result holds for all a0 ∈ S(Rn) with, say1, ‖a0‖Hs = C0, and
ϕ̃j (x) = (jn/2−s + j)a0(jx) (see Section 2)

Considering the case s = n
4 , we infer from the proof of Theorem 1.1:

Corollary 1.2. Let n � 5 and C0, δ > 0. We can find two sequences of initial data (ϕj )j∈N and (ϕ̃j )j∈N in the Schwartz
class S(Rn), with:

C0 − δ � E[ϕj ], E[ϕ̃j ] � C0 + δ; M[ϕj ] + M[ϕ̃j ] + E[ϕj − ϕ̃j ] −→
j→+∞ 0,

and a sequence of positive times tj → 0, such that the solutions ψj and ψ̃j to (1) with initial data ϕj and ϕ̃j respec-
tively, satisfy:

lim inf
j→+∞E[ψj − ψ̃j ](tj ) > 0.

1 Provided that we choose j sufficiently large.
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2. Reduction of the problem: super-critical geometric optics

We now proceed as in [2]. We set ε = j s−sc : ε → 0 as j → +∞. We change the unknown function:

uε(t, x) = j s−n/2ψj

(
t

j sc+2−s
,
x

j

)
.

Note that we have the relation:∥∥ψj(t)
∥∥

Ḣm = jm−s
∥∥uε

(
j sc+2−s t

)∥∥
Ḣm .

With initial data of the form ϕj (x) = jn/2−sa0(jx) + ja1(jx), (1) becomes:

iε∂tu
ε + ε2

2
�uε = |uε|2uε; uε(0, x) = a0(x) + εa1(x). (3)

We emphasize two features for the WKB analysis associated to (3). First, even if the initial datum is independent of
ε, the solution instantly becomes ε-oscillatory. This is the argument of the proof of [2, Cor. 1.7]. Second, the aspect
which was not used in the proof of [2, Cor. 1.7] is what was called ghost effect in gas dynamics ([6]): a perturbation of
order ε of the initial datum may instantly become relevant at leading order. These two features are direct consequences
of the fact that (3) is super-critical as far as WKB analysis is concerned (see e.g. [2]).

Consider the two solutions uε and ũε of (3) with a1 = 0 and a1 = a0 respectively. Then Theorem 1.1 stems from
the following proposition, which in turn is essentially a reformulation of [2, Prop. 1.9 and 5.1]:

Proposition 2.1. Let n � 1 and a0 ∈ S(Rn;R) \ {0}. There exist T > 0 independent of ε ∈ ]0,1], and a,φ,φ1 ∈
C([0, T ];Hs) for all s � 0, such that:∥∥uε − aeiφ/ε

∥∥
L∞([0,T ];Hs

ε )
+ ∥∥ũε − aeiφ1eiφ/ε

∥∥
L∞([0,T ];Hs

ε )
= O(ε), ∀s � 0,

where ‖f ‖2
Hs

ε
= ∫

Rn(1 + |εξ |2)s |f̂ (ξ)|2 dξ, and f̂ stands for the Fourier transform of f . In addition, we have, in Hs :

φ(t, x) = −t
∣∣a0(x)

∣∣2 +O
(
t3); φ1(t, x) = −2t

∣∣a0(x)
∣∣2 +O

(
t3) as t → 0.

Therefore, there exists τ > 0 independent of ε, such that: lim infε→0 εs‖uε(τ ) − ũε(τ )‖Ḣ s > 0, ∀s � 0.

3. Outline of the proof of Proposition 2.1

The idea, due to E. Grenier [5], consists in writing the solution to (3) as uε(t, x) = aε(t, x)eiφε(t,x)/ε , where aε is
complex-valued, and φε is real-valued. We assume that a0, a1 ∈ S(Rn) are independent of ε. For simplicity, we also
assume that they are real-valued. Impose:⎧⎪⎨

⎪⎩
∂tφ

ε + 1

2
|∇φε|2 + |aε|2 = 0; φε(0, x) = 0.

∂t a
ε + ∇φε · ∇aε + 1

2
aε�φε = i

ε

2
�aε; aε(0, x) = a0(x) + εa1(x).

(4)

Working with the unknown function uε = t (Reaε, Imaε, ∂1φ
ε, . . . , ∂nφ

ε), (4) yields a symmetric quasi-linear hyper-
bolic system: for s > n/2 + 2, there exists T > 0 independent of ε ∈ ]0,1] (and of s, from tame estimates), such that
(4) has a unique solution (φε, aε) ∈ C([0, T ];Hs)2. Moreover, the bounds in Hs(Rn) are independent of ε, and we
see that (φε, aε) converges to (φ, a), solution of:⎧⎪⎨

⎪⎩
∂tφ + 1

2
|∇φ|2 + |a|2 = 0; φ(0, x) = 0,

∂ta + ∇φ · ∇a + 1

2
a�φ = 0; a(0, x) = a0(x).

More precisely, energy estimates for symmetric systems yield:

‖φε − φ‖L∞([0,T ];Hs) + ‖aε − a‖L∞([0,T ];Hs) = O(ε), ∀s � 0.
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One can prove that φε and aε have an asymptotic expansion in powers of ε. The next term is given by:⎧⎨
⎩

∂tφ
(1) + ∇φ · ∇φ(1) + 2 Re

(
aa(1)

) = 0; φ(1)|t=0 = 0.

∂t a
(1) + ∇φ · ∇a(1) + ∇φ(1) · ∇a + 1

2
a(1)�φ + 1

2
a�φ(1) = i

2
�a; a(1)

∣∣
t=0 = a1.

Then a(1), φ(1) ∈ L∞([0, T ];Hs) for every s � 0, and∥∥aε − a − εa(1)
∥∥

L∞([0,T∗];Hs)
+ ∥∥Φε − φ − εφ(1)

∥∥
L∞([0,T∗];Hs)

� Csε
2, ∀s � 0.

Observe that since a is real-valued, (φ(1),Re(āa(1))) solves an homogeneous linear system. Therefore, if Re(āa(1)) =
0 at time t = 0, then φ(1) ≡ 0.

Considering the cases a1 = 0 and a1 = a0 for uε and ũε respectively, we obtain the first assertion of Proposition 2.1.
Note that the above O(ε2) becomes an O(ε) only, since we divide φε and φ by ε. This also explains why the first
estimate of Proposition 2.1 is stated in Hs

ε and not in Hs . The rest of the proposition follows easily.

Remark 2. We could use the ghost effect at higher order. For N ∈ N \ {0}, assume ũε
|t=0 = (1 + εN)a0 for instance.

Then for some τ > 0 independent of ε, we have

lim inf
ε→0

(
εs

∥∥uε(τ ) − ũε(τ )
∥∥

Ḣ s × ε1−N
)
> 0, ∀s � 0.

Returning to the functions ψ , the range for k becomes:

k � s + (sc − s)(N − 1)

1 + sc − s
.

For this lower bound to be strictly smaller than s, we have to assume s > N − 1.
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