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Abstract

We propose a new adaptive algorithm for multiscale simulations of non-Newtonian fluids. Using a posteriori error indicators,
the method can switch dynamically at each timestep between a rough (macroscopic) and a detailed (microscopic) model in each
cell of the mesh. The validity of the approach is tested on a plane shear flow for the FENE model of polymeric fluids. To cite this
article: A. Ern, T. Lelièvre, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modèles adaptatifs pour la simulation de fluides polymériques. Nous proposons un nouvel algorithme adaptatif pour la
simulation multi-échelles de fluides non-newtoniens. Le principe est d’utiliser soit un modèle simple (macroscopique) soit un
modèle plus détaillé (microscopique) dans chaque maille, le choix étant effectué de manière dynamique à chaque pas de temps
sur la base d’indicateurs d’erreur a posteriori. Des tests sur un écoulement cisaillé pour le modèle FENE de fluides polymériques
démontrent l’intérêt de l’approche. Pour citer cet article : A. Ern, T. Lelièvre, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in multiscale models for dilute polymer solutions, which are fluids containing non-interacting
polymer chains. Even if the concentration of the polymer chains is very low, the rheology of the fluid is influenced
by the presence of the polymer chains. Indeed, even though the solvent is a Newtonian fluid, the polymeric solution
is nevertheless non-Newtonian. To derive models describing the behavior of such fluids is a very difficult task, still in
progress.

There are basically two types of models: macroscopic models and microscopic models. Macroscopic models are
usually derived starting from the classical conservation laws of mechanics (conservation of momentum and conserva-
tion of mass) and then adding a so-called stress–strain relation. This relation is usually a partial differential equation
(PDE) or an integral relation. In this case, the model is called macro–macro, since only macroscopic quantities (ve-
locity, pressure, stress) are involved.
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The main difficulty with the macro–macro approach is that the obtained results usually compare poorly with ex-
periments. With a view to improve accuracy, the idea then came up to couple the kinetic equations which describe
the dynamics of a polymer chain in a flow (see [3]) with the momentum and mass conservation equations (see the
CONNFFESSIT approach [5]). Such an approach is referred to as micro–macro, since it couples a microscopic de-
scription of the microstructures evolving in the fluid with a macroscopic equation for the velocity and pressure. This
coupling is made through the computation of the extra stress tensor τ as a function of the configuration of the poly-
mer chains in the fluid. This micro–macro approach is very promising from the modeling viewpoint: it yields usually
better results than macro–macro models and enables numerical explorations of the link between microscopic proper-
ties and macroscopic behavior. The main drawback of micro–macro models is their computational cost. Indeed, the
introduction of additional microscopic variables implies a substantial increase of computations.

The goal of this Note is to describe a numerical procedure which allows to reduce the computational cost of micro–
macro simulations while maintaining accuracy. The key idea, inspired by [2], is to switch dynamically in some cells
of the mesh from the microscopic model to an associated macroscopic model, using suitable a posteriori error indi-
cators. This Note is organized as follows. The micro–macro and macro–macro models under scrutiny are presented
in Section 2. The adaptive algorithm is described in Section 3. The error indicators are supported by numerical ev-
idence for one-dimensional shear-flow problems; results are discussed in Section 4. Based on these very promising
results, further work will deal with the error analysis, the balance between modeling and discretization errors and with
multi-dimensional situations.

2. The micro–macro and macro–macro models

The simplest model to describe the configuration of the polymer chains at the microscopic level is the dumbbell
model. It consists of approximating the polymer chain by two beads linked by the end-to-end vector Xt for which a
kinetic equation, i.e. a stochastic differential equation (SDE), can be derived. The process Xt depends on the time t ,
the space variable x and the variable ω in the underlying probability space. In non-dimensional form, the complete
micro–macro system couples the Navier–Stokes equations Re(∂tu+u ·∇u) = (1−ε)�u−∇p+divτ and div(u) = 0
for the velocity u and pressure p to the following equations allowing to determine the stress tensor τ as a mean of a
functional of the stochastic process Xt :

τ = ε

We

(
E

(
Xt ⊗ F (Xt )

) − Id
)
, (1)

dXt + u · ∇x Xt dt =
(

∇xuXt − 1

2We
F (Xt )

)
dt + 1√

We
dW t , (2)

where W t denotes a d-dimensional standard Brownian motion. The above system is supplemented with initial condi-
tions on (u,Xt ) and boundary conditions on u. The Reynolds number Re > 0, the Weissenberg number We > 0 and
ε ∈ (0,1) are non-dimensional parameters. The vector F (Xt ) in (1)–(2) is the force (of entropic origin) between the
two beads. In the sequel we consider the FENE model for which F (Xt ) = (1 −‖Xt‖2/b)−1Xt . The non-dimensional
parameter b is related to the maximal length of the polymer chain. The FENE model accounts for the finite extensi-
bility of the polymer chain, through an explosive force when ‖Xt‖ → √

b.
The above micro–macro model can be discretized using the CONNFFESSIT method. The principle is to use a

finite element method in space, a time discretization by an Euler scheme, and a Monte Carlo method to compute the
stress tensor as an empirical mean. Thus, in each cell of the mesh, it is necessary to keep track of the configuration of
an ensemble of dumbbells, whence the high computational costs.

A macro–macro model, the so-called FENE-P model, can be obtained from the micro–macro FENE model through
a closure approximation which consists of replacing the square of the polymer length in the definition of F (Xt ) by
its expectation, yielding F (Xt ) = (1 − E(‖Xt‖2)/b̃)−1Xt . Using this expression in (1), (2), the stress tensor τ can be
obtained by solving a non-linear PDE. Indeed, letting A = E(Xt ⊗ Xt ), it is inferred that

τ = ε

We

(
A

1 − tr(A)/b̃
− Id

)
, (3)

dA

dt
+ u · ∇ A − ∇uA − A∇uT = − 1

We

A

˜ + 1
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Id . (4)
1 − tr(A)/b
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The parameter b̃ used in the FENE-P model is different from the parameter b used in the FENE model. Typically,
b̃ should be chosen smaller than b to obtain consistent results between the FENE and FENE-P models (see [4]). The
FENE-P model is a macro–macro model which can be simulated by standard deterministic methods.

3. The adaptive algorithm

This section describes the main contribution of this Note, namely the adaptive algorithm in which a posteriori error
indicators are used to switch at every timestep from the micro–macro FENE model to the macro–macro FENE-P
model (or conversely) in order to reduce substantially simulation costs of polymeric fluid flow simulations. In each
cell of the mesh, either the rough (FENE-P) model or the detailed (FENE) model is used. At each timestep, three tasks
are performed:

(i) Compute stress tensor and velocity field for current timestep in each mesh cell using the local model at hand;
(ii) Compute error indicators;

(iii) Based on these indicators, decide in each cell whether to adapt the model or not.

Let us now give some details on the implementation of tasks (ii) and (iii). When the detailed model is used, the Monte
Carlo method requires to let an ensemble of M dumbbells evolve in each cell of the mesh. When the rough model
is used, we also let an ensemble of Merr dumbbells in the cell evolve. The reason for considering these dumbbells is
to compute an estimate of the results that would have been obtained if the detailed model had been used instead. Of
course, the algorithm is efficient if it is possible to choose Merr � M . Task (ii) above consists of the following:

– if the rough model is being used locally, estimate the stress tensor and the velocity field at the next time step by
the CONNFFESSIT method using the small ensemble of Merr dumbbells;

– if the detailed model is being used locally, estimate the stress tensor and the velocity field at the next time step by
the deterministic method using (3)–(4).

In both cases, the relative error on the velocity or on the stress tensor can then be used as a local error indicator, and a
threshold value is used to flag cells for model adaption.

– If the error is large and the model in the cell is the rough one, the detailed model is selected locally for the next
timestep. This requires to initialize an ensemble of M − Merr dumbbells; this is accomplished by replicating the
ensemble of Merr dumbbells M/Merr times.

– If the error is small and the model in the cell is the detailed one, the rough model is selected locally for the next
timestep; an ensemble average is simply evaluated to initialize the stress tensor (or the covariance tensor A).

4. Numerical experiment

To assess the validity of the approach, we consider a plane shear flow in dimension d = 2. In this case, u(t,x) =
(u(t, y),0), where x = (0, y) and all the variables only depend on y. We suppose that y ∈ D = (0,1). We discretize
the problem by P1 finite elements for u, and P0 finite elements for Xt and A. In practice, we use a variance reduction
method (see [1]), the FENE-P model being the control variate. Initially, the fluid is at rest, the dumbbells are at
equilibrium according to the law (2πb)−1(b + 2)(1 − ‖X‖2/b)b/21‖X‖2<b dX, and the model is the rough model in
each cell. We then progressively apply a velocity at y = 0: u(t,0) = inf(100 t/T ,1)V , where T denotes the final time
of the simulation, and V the velocity at the boundary. At y = 1, the velocity is zero: u(t,1) = 0. The parameters
are: number of space intervals I = 10, number of timesteps N = 2000, number of dumbbells M = 10 000, number of
dumbbells to measure the errors Merr = 100 (observe that Merr/M � 1), T = 2, V = 1, Re = 0.1, ε = 0.9, We = 0.5,
b = 20 and b̃ = 0.4b.

The error indicator is the relative error on the velocity with threshold η being set to 10−1, 10−2 or 10−3. With
respect to using the detailed model everywhere, the adaptive method yields speedups in execution times of 81, 37
and 18, respectively, for η = 10−1, 10−2 or 10−3. In Fig. 1, we compare on the left the error on the velocity for
different values of the threshold parameter (the reference velocity being obtained by the simulation with the detailed
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Fig. 1. Left: error on the velocity as a function of time. Right: number of cells where the detailed model is used as a function of time.

model everywhere), and we represent on the right the number of cells where the detailed model is used as a function
of time. We observe that for a threshold η = 10−3, the computational time is divided by 18 and the maximum of the
error is only 4×10−3.
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