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Abstract

New existence and regularity results are given for non-linear elliptic problems with measure data. The gradient of the solution is
itself in an optimal (fractional) Sobolev space: this can be considered an extension of Calderón–Zygmund theory to measure data
problems. To cite this article: G. Mingione, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Estimations de type Calderon–Zygmund pour des problèmes avec données mesures. On établit de nouveaux résultats
d’existence et régularité pour des problèmes elliptiques non-linéaires avec données mesures. Le gradient de la solution appar-
tient lui-même à un espace de Sobolev (fractionnaire) optimal, ce que l’on peut considérer comme une extension de la théorie de
Calderón–Zygmund aux problèmes avec données mesures. Pour citer cet article : G. Mingione, C. R. Acad. Sci. Paris, Ser. I 344
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Considérons le problème de Dirichlet (1) sous les hypothèses (2), (3), où μ est une mesure de Radon de variation
totale finie. Un théorème classique de Boccardo et Gallouët [4,5] assure l’existence d’une solution, au sens des dis-
tributions, u de (1), dont le gradient Du vérifie les propriétés de régularité (5). Nous nous proposons ici de montrer
qu’une telle propriété, unique résultat de régularité connu pour les solutions, est en fait une conséquence d’un résultat
de régularité plus profond pour Du. Nous montrons en effet que Du appartient à un espace de Sobolev (fractionnaire)
optimal : plus précisément, (9) a lieu. Nous obtenons alors en corollaire, le résulat d’intégrabilié (5), via le thèorème
d’injection de Sobolev dans le cas fractionnaire. Nous obtenons également de substantielles améliorations des résul-
tats, à la fois d’intégrabilité et de différentiabilité, dans le cas où la mesure μ vérifie la conditon de diffusion (15).
Nous démontrons en effet, sous cette hypothèse, de nouvelles estimées optimales, de Marcinkiewicz pour le gradient,
donnant ainsi une version non-linéaire d’un théorème de D. Adams [1]. La condition (15) permet également d’amé-
liorer le taux de différentiabilité de Du ; nous prouvons en outre une estimée de décroissance de type Morrey pour
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la dérivée fractionnaire. Les démonstrations utilisent des arguments de localisation, reposant sur un certain type de
décomposition dyadique du domaine, combinés avec des arguments de comparaison locale.

1. Introduction and function spaces

Let us consider the following Dirichlet problem:

−diva(x,Du) = μ in Ω, u = 0 on ∂Ω. (1)

Here we assume that Ω ⊂ R
n is a bounded domain, μ is a signed Radon measure with finite total variation |μ|(Ω) <

∞, and a :Ω × R
n → R

n is a Carathèodory vector field satisfying the following standard monotonicity and Lipschitz
assumptions:{

ν
(
s2 + |z1|2 + |z2|2

)(p−2)/2|z2 − z1|2 �
〈
a(x, z2) − a(x, z1), z2 − z1

〉
,∣∣a(x, z2) − a(x, z1)

∣∣ � L
(
s2 + |z1|2 + |z2|2

)(p−2)/2|z2 − z1|,
∣∣a(x,0)

∣∣ � Lsp−1,
(2)

for every z1, z2 ∈ R
n, x ∈ Ω . When referring to the structural properties of a, and in particular to (2), we shall always

assume p � 2, n � 2, 0 < ν � L, s � 0. The measure μ will be considered as defined on the whole R
n by simply

letting |μ|(Rn \ Ω) = 0. Sometimes, we shall also use the following assumption:∣∣a(x, z) − a(x0, z)
∣∣ � L|x − x0|

(
s2 + |z|2)(p−1)/2

, for all x, x0 ∈ Ω, and z ∈ R
n. (3)

Assumptions (2) are modeled on the basic example −div[c(x)(s2 + |Du|2) p−2
2 Du] = μ, where ν � c(x) � L. An

important instance is the p-Laplacian operator with measure data: −�pu = −div(|Du|p−2Du) = μ. For the prob-
lem (1) we shall adopt the following distributional-like notion of solution, compare with [4]:

Definition 1.1. A solution u to the problem (1) under assumptions (2), is a function u ∈ W
1,1
0 (Ω) such that a(x,Du) ∈

L1(Ω,R
n) and∫

Ω

a(x,Du)Dϕ dx =
∫
Ω

ϕ dμ for every ϕ ∈ C∞
c (Ω). (4)

The study of problem (1) began with the fundamental work of Littman, Stampacchia and Weinberger [12,15], who
treated linear equations with measurable coefficients. When referring to Definition 1.1, the existence theory for the
general quasilinear Leray–Lions type operators in (1) has been established in the by now classical papers of Boccardo
and Gallouët [4,5], who proved the existence of a solution u to (1) such that

Du ∈ Lq
(
Ω,R

n
)

for every q < b := n(p − 1)/(n − 1) when p � n. (5)

The solution found in [4] is obtained via approximation with ‘regular data’, that is, solving auxiliary problems
−diva(x,Dun) = fn, un ∈ W

1,p

0 (Ω), where fn is a suitable mollification of μ; then a combination of a priori and
convergence estimates yields the existence. These are the so-called Solutions Obtained as Limits of Approximations
(SOLA), and are the solutions we are going to deal with here. Distributional solutions as (4) are not unique, and
uniqueness is indeed the main open problem in the theory: identifying a suitable functional class where a unique
solution can be defined and found. Despite several attempts such a problem remains mostly unsolved but when p = n

[9,10], or in the case where μ is an L1-function [3,6,8] when so-called entropy and renormalized solutions come into
the play.

Inclusion (5) is optimal in the scale of Lebesgue spaces, as Du /∈ Lb in general. The counterexample is given
by the Green’s function for the p-Laplacian operator, that is the (unique) solution to �pu = δ0, which is propor-
tional to |x|(p−n)/(n−1); here δ0 denotes the Dirac measure charging the origin. Anyway (5) can be sharpened using
Marcinkiewicz spaces [3], see below, since

Du ∈Mb
(
Ω,R

n
)
. (6)

When p > n instead, μ belongs to the dual of W 1,p , and the existence of a unique solution in the natural space
W

1,p
(Ω) follows by standard methods of the theory of monotone operators.
0
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To explain our results, that will be presented in the next section, we shall need the following preliminary definitions.
For a bounded open set A ⊂ R

n and k ∈ N, parameters α ∈ (0,1) and q ∈ [1,∞), a map w :A → R
k belongs to the

fractional Sobolev space Wα,q(A,R
k), see [2], provided:

‖w‖q

Wα,q(A) :=
∫
A

∣∣w(x)
∣∣q dx +

∫
A

∫
A

|w(x) − w(y)|q
|x − y|n+αq

dx dy =: ‖w‖q

Lq(A) + [w]q
α,q;A < ∞.

A measurable map w : A → R
k belongs to the Marcinkiewicz space Mt (A,R

k) iff

sup
λ�0

λt
∣∣{x ∈ A: |w| > λ

}∣∣ =: ‖w‖t
Mt (A) < ∞.

Now Marcinkiewicz–Morrey spaces [1]; a map w ∈ Mt (A,R
k) belongs to the space Mt,θ (A,R

k) with θ ∈ [0, n] iff,
with BR denoting a generic ball of radius R,

‖w‖t
Mt,θ (A)

:= ‖w‖t
Mt (A) + sup

BR⊂A,R�1
Rθ−n‖w‖t

Mt (BR) < ∞. (7)

Obviously ‖w‖Mt,n(A) ≈ ‖w‖Mt (A), and ‖w‖Mt,θ1 (A) < ‖w‖Mt,θ2 (A) iff θ1 < θ2. Beside, we recall the definition of

Sobolev–Morrey spaces of fractional order. We say that a map w ∈ Wα,q(A,R
k), belongs to Wα,q,θ (A,R

k), with
α ∈ (0,1), q ∈ [1,∞), θ ∈ [0, n], iff w ∈ Wα,q(A,R

k), and moreover,

[w]q
α,q,θ;A := sup

BR⊂A,R�1
Rθ−n[w]q

α,q;BR
< ∞. (8)

In any case we let ‖w‖Wα,q,θ (A) := ‖w‖Wα,q(A) + [w]α,q,θ;A. See [7,13], and enclosed references. The local variants
of all the above spaces are then defined in the usual way.

2. Calderón–Zygmund theory

Here we describe some of the main results in [14]. Amongst the possible definitions of solutions we take the one
of SOLA for simplicity; other notions, as entropy solutions, maybe also used: the main emphasis here is on a priori
regularity estimates. Inclusion (5), together with its refinement (6), is basically the only regularity result available for
non-linear measure data problems as (1): we shall see that it is actually a consequence of a much deeper regularity
property of Du. Let us focus on the case p = 2, considering �u = f ; the standard Calderón–Zygmund theory now
asserts that f ∈ L1+ε implies Du ∈ W 1,1+ε if ε > 0.

By Sobolev’s embedding theorem, in particular Du ∈ Ln/(n−1), that is the limit case of (5). This fails for ε = 0,
and so does the inclusion Du ∈ W 1,1 in general. So one could interpret (5) as the trace of a potentially existent
Calderón–Zygmund theory below the limit case W 1,1. Indeed the following holds:

Theorem 2.1 (of Calderón–Zygmund type). Under the assumptions (2) and (3) with 2 � p � n, there exists a solution
u ∈ W

1,1
0 (Ω) to the problem (1) such that for every ε ∈ (0,1),

Du ∈ W
1−ε
p−1 ,p−1

loc

(
Ω,R

n
)
, and in particular Du ∈ W

1−ε,1
loc

(
Ω,R

n
)

when p = 2. (9)

More in general, with b = n(p − 1)/(n − 1) as in (5), for every ε ∈ (0, σ (q)) it holds:

Du ∈ W

σ(q)−ε
q

,q

loc

(
Ω,R

n
)

for every q ∈ [p − 1, b), where σ(q) := n(1 − q/b). (10)

Furthermore there exists a constant c ≡ c(n,p,L/ν, q,σ ) such that for every ball BR � Ω of radius R > 0, and
σ ∈ (0, σ (q)), the following naturally scaling local estimate holds:∫

BR/2

∫
BR/2

|Du(x) − Du(y)|q
|x − y|n+σ

dx dy � c

Rσ

∫
BR

(|Du|q + sq
)

dx + cRσ(q)−σ
[|μ|(BR)

]q/(p−1)
. (11)

In other words, when p = 2 though in general Du /∈ W 1,1, by (9) we ‘almost have’ second derivatives of u, and
in this sense the previous theorem extends the Calderón–Zygmund theory to problems with measure data. Observe
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that (9) is sharp for every p � 2; indeed assuming by contradiction that Du ∈ W 1/(p−1),p−1, using Sobolev embed-
ding theorem in the fractional case [2] would give exactly Du ∈ Lb , but this is impossible as seen in the previous
section. A similar argument gives the sharpness of (10), which in turn is obtainable from (9) also via interpolation. On
the other hand, (9) locally implies (5), again via Sobolev embedding. When p 	= 2 we do not approach the differen-
tiability exponent 1 in (9) as ε ↘ 0, but only 1/(p − 1). This is not a surprise: even for the model case �pu = 0 the
existence of second derivatives of W 1,p-solutions is not clear due to the degeneracy of the problem, while fractional
derivatives naturally appear: Du ∈ W 2/p,p . On the other hand, a classical result going back to K. Uhlenbeck asserts
that though Du may be not differentiable for �pu = 0, certain natural nonlinear expressions of the gradient still are
(in T. Iwaniec’s words). Indeed, defining V (Du) := (s2 + |Du|2)(p−2)/4Du, under assumptions (2) it turns out that
V (Du) ∈ W

1,2
loc (Ω) for any W 1,p-solution to diva(Du) = 0. This phenomenon extends to measure data problems:

Theorem 2.2 (Non-linear Calderón–Zygmund estimate). Under the assumptions (2) and (3) with 2 � p � n, let
u ∈ W

1,q

0 (Ω) be the solution to (1) found in Theorem 2.1. Then

V (Du) ∈ W
1−ε,q0
loc

(
Ω,R

n
)
, for every ε ∈ (0,1), q0 := 2p/(p + 2). (12)

Moreover, for any open subset Ω ′ � Ω , we have, with c̃ ≡ c̃(n,p,L/ν, ε,dist(Ω ′, ∂Ω),Ω),[
V (Du)

]
1−ε,q0;Ω ′ � c̃

[|μ|(Ω)
]p/(2p−2) + c̃sp/2|Ω|1/q0 . (13)

When the problem is non-degenerate, that is s > 0 in (2), ‘almost second derivatives’ are again retrievable:

Theorem 2.3 (The non-degenerate case). Under the assumptions (2) and (3) with 2 � p � n, let u ∈ W
1,q

0 (Ω) be the
solution to (1) found in Theorem 2.1, and assume s > 0. Then

Du ∈ W
1−ε,q0
loc

(
Ω,R

n
)
, for every ε ∈ (0,1), q0 := 2p/(p + 2).

Estimate (13) holds with Du replacing V (Du) where the constant c̃ is replaced by s(2−p)/2c(n,p)c̃.

When p > 2, we get different differentiability rates too:

Theorem 2.4 (A different range). Under the assumptions (2), and (3) with 2 � p � n, let u ∈ W
1,q

0 (Ω) be the solution
to (1) found in Theorem 2.1. Then

Du ∈ W
2/p−ε,pq0/2
loc

(
Ω,R

n
)

for every ε ∈ (0,1), q0 := 2p/(p + 2). (14)

3. Diffusing measures

The sharpness of (6) and (9)–(10) stems from considering counterexamples involving Dirac measures, see Sec-
tion 1. How things change when considering measures diffusing on sets with higher Hausdorff dimension? A natural
way to quantify this is to consider the following Morrey-type density condition:

|μ|(BR) � MRn−θ , 0 � θ � n, M � 0, (15)

satisfied for any ball BR ⊂ R
n of radius R. Assuming (15) does not allow μ to concentrate on sets with Hausdorff

dimension less than n − θ , and indeed higher regularity of solutions follows. We shall restrict to the case θ ∈ [p,n],
otherwise the measure μ belongs to the dual space W−1,p′

by a fundamental theorem of D. Adams, and the existence
of a unique solution in W

1,p

0 (Ω) for (1) follows via monotonicity methods; see [14] for results in this case. Assum-
ing (15) we discover that in all the above statements the role of the dimension n is actually played by θ . For the first
improvement regards the integrability of Du, simultaneously detectable in two different scales, the Marcinkiewicz
and Morrey ones, see (7).

Theorem 3.1 (Marcinkiewicz–Morrey regularity). Under the assumptions (2) with 2 � p � n, and (15) with θ � p,
there exists a solution u ∈ W

1,1
0 (Ω) to the problem (1) such that

Du ∈Mm,θ (
Ω,R

n
) ⊆ Mm

(
Ω,R

n
)
, m := θ(p − 1)/(θ − 1). (16)
loc loc
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Moreover, for any open subset Ω ′ � Ω we have

‖Du‖Mm,θ (Ω ′) � cM1/(p−1) + cs|Ω|1/m,

where c ≡ c(n,p,L/ν,dist(Ω ′, ∂Ω),Ω), and M is in (15). In particular, in the limit case θ = p we have

Du ∈Mp,p

loc

(
Ω,R

n
) ⊆ Mp

loc

(
Ω,R

n
)
. (17)

The exponent m in (16) is expected to be the best possible for every p � 2, and it actually is when p = 2: in
general Du /∈ Lθ/(θ−1), even locally. Indeed, Theorem 3.1 may as well be considered as the non-linear version of a
classical potential theory result of D. Adams [1], asserting that Iα ∈ Mθ/(θ−α),θ whenever μ satisfies (15), where
I (μ)(x) := ∫ |x − y|α−n dμ(y), α ∈ (0, θ); this applies to �u = μ, when Du ≈ I1(μ). Adams’s result is sharp, hence
the sharpness of (16) for p = 2; see [14] for more. Observe that for θ < n it is Mm,θ ⊂ Mm,n ≡ Mm, therefore
Du ∈ Mm as in (16)–(17), a result that naturally improves (6). As explained above, when θ < p, the solution u is
uniquely found in W

1,p

0 (Ω), so that (15) provides the natural scale allowing to pass from (6), when θ = n, to (17),
when θ = p; in this last case the W 1,p-regularity of the solution is missed just by a natural Marcinkiewicz-scale factor.
In other words (17) is the borderline result before passing to the case of capacitary measures. Finally, note that (16)
does not require (3). Note how in Theorem 3.1 assumption (3) is not needed.

The second effect of condition (15) is an expansion of the differentiability range in (10). Moreover the fractional
derivatives are themselves in a Morrey space, see the definition in (8).

Theorem 3.2 (Sobolev–Morrey regularity). Under the assumptions (2) and (3) with p � n, and (15) with θ � p, let
u ∈ W

1,1
0 (Ω) be the solution found in Theorem 3.1. Then

Du ∈ W

σ(q,θ)−ε
q

,q,θ

loc

(
Ω,R

n
)

for every q ∈ [p − 1,m), where σ(q) := θ(1 − q/m). (18)

In particular,

Du ∈ W
1−ε
p−1 ,p−1,θ

loc

(
Ω,R

n
)
, and Du ∈ W

1−ε,1,θ
loc

(
Ω,R

n
)

when p = 2. (19)

Moreover, for any open subset Ω ′ � Ω and σ ∈ (0, σ (q, θ)), there exists c ≡ c(n,p,L/ν, q,σ,dist(Ω ′, ∂Ω),Ω) such
that

‖Du‖Wσ/q,q,θ (Ω ′) � cM1/(p−1) + cs|Ω|1/q .

The latter estimate extends to the case of non-linear equations with measure data the classical Morrey space es-
timates for linear elliptic equations, see for instance [11]: the standard result for the model case �u = f is that
Du ∈ W 1,q,θ when f ∈ Lq,θ for q > 1; inclusion (19) is a sharp extension of this to the case q = 1, and we refer again
to [14] for more results. In light of (16) we can interpret (18) and therefore also (10) as a scale of regularity for Du

that leads, as q ↗ m, from the maximal differentiability (19) toward the maximal integrability (16).
The proofs of all the above theorems are contained in [14], and they are quite technical. As for the differentiability

estimates, a careful localization procedure is used: we employ a decomposition of the domain in cubes C with mesh h.
On everyone of them we solve a homogeneous problem of the type diva(x,Dv) = 0 in C, and v ≡ u on ∂C; for Dv

good differentiability estimates are available. Then we prove a careful integral estimate on the difference |Du − Dv|,
in terms of the mesh-size h. Finally we conclude with a covering-comparison argument, and a delicate iteration
scheme in fractional Sobolev spaces. As for the new Marcinkiewicz estimate of Theorem 3.1, we shall again use a
localization argument, but this time on certain suitable Calderón–Zygmund cubes obtained decomposing the level set
of the gradient of the solution. Once again we shall proceed via a comparison technique, but a crucial point will be
here proving the a priori Morrey-space regularity of the gradient Du; this gives in turn a better rate of decay of the
level set measure, on each one of the Calderón–Zygmund cubes considered.
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