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Abstract

We solve a problem posed by E. Yalçin on the cohomology length of a p-group P , by providing bounds for the group theoretical
invariant s(P ) when p > 2. These bounds improve the known bounds on the cohomology length of p-groups for odd p. To cite
this article: K. Thas, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

L’ algèbre de cohomologie p-modulaire d’un p-groupe fini. On obtient une borne pour la longueur cohomologique d’un
p-groupe fini, p > 2, résolvant ainsi un problème posé par E. Yalçin. Pour citer cet article : K. Thas, C. R. Acad. Sci. Paris, Ser. I
344 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Soient p un nombre premier et P un p-groupe fini. Notons

H ∗(P ) = H ∗(P,Fp) =
∞⊕
i=0

Hi(P,Fp)

l’algèbre de cohomologie de P à coefficients dans Fp , et chl(P ) la longueur cohomologique de P (voir Section 1).
Je me propose de démontrer le théorème suivant, qui résout un problème posé par E. Yalçin :

Théorème 0.1. Supposons que |P | = p2n+1 pour p > 2 et n � 3. Si P est un p-groupe extra-spécial de type (d), on a

pn−2(p2 + (
√

2 − 1) − 5/2
) + 1 � chl(P ) � pn−2(p2 + p − 1

)
,

ou P2 est un p-groupe extra-spécial de type (d) avec |P2| = p5.
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1. Introduction and notation

Throughout this Note, for a finite p-group P ,

H ∗(P ) = H ∗(P,Fp) =
∞⊕
i=0

Hi(P,Fp)

will denote the p-modular cohomology algebra of P .
A theorem of J.-P. Serre [7] states that if P is a p-group which is not elementary Abelian, then there exist non-zero

elements u1, u2, . . . , um ∈ H 1(P,Fp) such that
m∏

i=1

ui = 0 if p = 2 and
m∏

i=1

β(ui) = 0 if p > 2, (∗)

where β is the Bockstein homomorphism. The smallest integer m such that relation (∗) is satisfied is referred to as the
cohomology length of P , and is denoted by chl(P ) throughout. Several papers on the calculation of the cohomology
length have appeared; see, for instance, O. Kroll [3], J.-P. Serre [8], T. Okuyama and H. Sasaki [6], P.A. Minh [5] and
E. Yalçin [10].

Suppose P is a p-group which is not p-central (not all elements of order p belong to the center). Define a repre-
senting set S of P as a subset that includes at least one non-central element from each maximal elementary Abelian
subgroup of P . Then define s(P ) as the minimum cardinality of a representing set in P .

Theorem 1.1. (E. Yalçin [10]) If P is an extra-special p-group which is not p-central, then chl(P ) � s(P ). Moreover,
if P has a self-centralizing maximal elementary Abelian subgroup, then equality holds.

Theorem 1.1 was applied in [10] to prove the following theorem, which yields the best known bound for chl(P ):

Theorem 1.2. (E. Yalçin [10]) If P is a p-group and k = dimFp
H 1(P,Fp), then

chl(P ) � p + 1

if k � 3, and for k > 3 we have

chl(P ) � (p2 + p − 1)p�k/2�−2.

In this Note, we give an inductive bound when p is an odd prime which yields a new lower bound. As such, we
solve Problem 7.2 of E. Yalçin [10].

The precise statement of the main result will be made in the next section.

2. Extra-special p-groups and statement of the main result

Let P be an extra-special p-group, which in this Note we define by the following group extension:

1 �→ Z/p �→ P �→ V �→ 1,

V being a vector space over Fp . Put k = dimFp
V .

If P ∼= P ∗ ×Z/p for some subgroup P ∗ ⊂ P , then chl(P ) = chl(P ∗) and s(P ) = s(P ∗). Without loss of generality
we suppose that P is not of this form, that is, P has no proper direct factors. Then, if P is represented by the extension
class [α] ∈ H 1(V ,Fp), there exists a basis such that [α] is of one of the following forms (cf. P.A. Minh [5]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p = 2 and k = 2n, (a) X1Y1 + X2Y2 + · · · + XnYn or

for p = 2 and k = 2n, (b) X2
1 + Y 2

1 + X1Y1 + X2Y2 + · · · + XnYn;
for p = 2 and k = 2n + 1, (c) X2

0 + X1Y1 + X2Y2 + · · · + XnYn;
for p > 2 and k = 2n, (d) X1Y1 + X2Y2 + · · · + XnYn or

for p > 2 and k = 2n, (e) β(X1) + X1Y1 + X2Y2 + · · · + XnYn;
for p > 2 and k = 2n + 1, (f) β(X0) + X1Y1 + X2Y2 + · · · + XnYn.
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When P is an extra-special group of type (e) or (f), it is well known that chl(P ) � p. In cases (a) and (d), CP (E) = E

for any maximal elementary Abelian subgroup E � P , so that equality holds in Theorem 1.1. For case (a), E. Yalçin
obtained the best possible bound in [10]. Theorem 1.2 represents a general bound which is valid for all cases. In that
same paper, Problem 7.2 asks for a calculation of s(P ) = chl(P ) in terms of n and p for groups of type (d).

This calculation is the objective of the present note, so as to obtain at the same time a bound for chl(P ) of such a
group P , and more generally, of any p-group for odd p.

Theorem 2.1. Let P be an extra-special p-group of order p2n+1 where p is odd. If P is of type (d), we have pn−2(p2 +
(
√

2 − 1) − 5/2) + 1 � chl(P ) � pn−2(p2 + p − 1). Moreover,

pn−2(chl(P2) − 1
) + 1 � chl(P ) � pn−2 · chl(P2),

where P2 is an extra-special p-group of type (d) with order p5.

In the rest of this Note, we will only consider extra-special groups of type (d); if P is a p-group, p odd, which is
not elementary Abelian and k = dimFp

(H 1(P,Fp)) ∈ {2n,2n + 1}, then P has a factor group Pn isomorphic to some
group of type (d), (e) or (f). So chl(P ) � chl(Pn).

3. Proof of the main result

Suppose P = Pn is a group of type (d), and note that |Pn| = p2n+1. Suppose W = W(2n − 1,p) is the variety
in the (2n − 1)-dimensional projective space PG(2n − 1,p) over Fp which is determined by the bilinear alternating
form induced by the quadratic form displayed in (d) of the previous section. So W is a ‘non-singular symplectic polar
space’. Define s(W) as the minimal cardinality of a set of points of PG(2n− 1,p) which meets every maximal totally
isotropic subspace (‘generator’) of W . Then it holds that s(Pn) = s(W) [11]. Note that the Witt index of W is n, so
that (n − 1) is the dimension of a generator of W . An easy counting argument1 shows that the number of points of
such a set is at least pn + 1 [9], and in case of equality, one speaks of an ‘ovoid’ of W(2n − 1,p). More generally, if
B is a point set of W(2n − 1,p) meeting each generator, call it a blocking set.

Theorem 3.1. (See, e.g., the survey paper [9] for (i) and [2] for (ii).)

(i) W(2m + 1,p) has no ovoids for m � 1.
(ii) s(W(3,p)) � p2 + (

√
2 − 1)p − 3/2.

We need a good bound for the size of a blocking set of symplectic polar spaces, which we will try to obtain now.
Let W(2r −1,p) ⊂ W(2n−1,p), where we assume r � 2 and n � 3. Suppose η is the symplectic polarity defined

by W(2n− 1,p). Now let π ⊂ W(2n− 1,p) be a projective subspace of PG(2n− 1,p) of dimension n− r − 1, such
that W(2r −1,p) ⊂ πη (W(2r −1,p) has no point in common with π ). Suppose B is a blocking set of W(2r −1,p).
Define B∗ as the set of points of W(2n − 1,p) which are on lines that contain a point of B and one of π , but not
contained in π (B∗ is a ‘truncated cone’ with base π and vertex B). Then one observes two facts:

(i) |B∗| = pn−r−1
p−1 (p − 1)|B| + |B| = |B|pn−r ;

(ii) B∗ contains at least one point of any generator of W(2n − 1,p).

Now put 2r − 1 = 3, and consider a point x of W(3,p). Let y be a point of W(3,p) which is not collinear with x

on W(3,p). For any point z of W(3,p), denote by z⊥ the set of points which are collinear with z on W(3,p)

(including z). Also, if A is a point set of W(3,p), write A⊥ for ∩a∈Aa⊥, and A⊥⊥ for (A⊥)⊥. Then clearly

B = ((
x⊥ \ {x, y}⊥) ∪ {x, y}⊥⊥) \ {x}

1 Let S be a set of points of W(2n− 1,p) meeting every generator. Count in two ways the number of pairs (p,π), where p ∈ S, π is a generator
and p ∈ π . Then |S|·(number of generators containing x) � (total number of generators)·1.
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is a blocking set of W(3,p) of size p2 + p − 1. So we get

|B∗| = pn−2(p2 + p − 1
)
,

and hence s(W(2n − 1,p)) is at most pn−2 · s(W(3,p)). (Note that as thus we have obtained an alternative proof of
a result of [10].)

Now suppose that for k < n, k ∈ N \ {0,1}, s(W(2k − 1,p)) � pk−2(s(W(3,p)) − 1) + 1.
We will use this induction hypothesis to show that the inequality also holds for k = n. The following argument was

first made by K. Metsch in a slightly more particular setting (cf. [4, p. 284]), but was never published.
Let B∗ be a blocking set of W(2n− 1,p) which does not contain a blocking set of strictly smaller size. Then there

is a generator of W(2n − 1,p) that meets B∗ in a unique point x. Each of the α := pn−1 + · · · + p2 + p other points
of this generator sees in its quotient a blocking set of a W(2n−3,p), so besides x at least β := pn−3(s(W(3,p))−1)

further points. As every point of B∗ \ {x} is counted at most γ := pn−2 +· · ·+p + 1 times, we have |B∗ \x| � αβ/γ .
This proves the main result.
Note that the geometrical results of this section are still valid if we replace the field Fp by Fq when q is any odd

prime power.
The minimal size of a blocking set of W(3,3), respectively W(3,5), equals 11, respectively 29 | see [1, Re-

mark 10]. So for these cases, we have 10 × 3n−2 + 1 � s(W(2n − 1,3)) � 11 × 3n−2 and 28 × 5n−2 + 1 �
s(W(2n − 1,5)) � 29 × 5n−2.
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