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Abstract

We solve a problem posed by E. Yalcin on the cohomology length of a p-group P, by providing bounds for the group theoretical
invariant s(P) when p > 2. These bounds improve the known bounds on the cohomology length of p-groups for odd p. To cite
this article: K. Thas, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

I’ algebre de cohomologie p-modulaire d’un p-groupe fini. On obtient une borne pour la longueur cohomologique d’un
p-groupe fini, p > 2, résolvant ainsi un probleme posé par E. Yalcin. Pour citer cet article : K. Thas, C. R. Acad. Sci. Paris, Ser. 1
344 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version francaise abrégée

Soient p un nombre premier et P un p-groupe fini. Notons

o
H*(P)=H*(P,F,)=ED H (P,F))
i=0
I’algebre de cohomologie de P a coefficients dans I, et chl(P) la longueur cohomologique de P (voir Section 1).

Je me propose de démontrer le théoreme suivant, qui résout un probleme posé par E. Yalgin :

Théoréme 0.1. Supposons que |P| = p>'*!

PP+ (V2= 1)=5/2) + 1 <chl(P) < p" 2(p>+ p— 1),

pour p >2etn > 3. Si P estun p-groupe extra-spécial de type (d), on a

ou P, est un p-groupe extra-spécial de type (d) avec | P»| = p°.
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1. Introduction and notation

Throughout this Note, for a finite p-group P,

o0
H*(P)=H*(P,F,) =D H (P,F))
i=0
will denote the p-modular cohomology algebra of P.
A theorem of J.-P. Serre [7] states that if P is a p-group which is not elementary Abelian, then there exist non-zero
elements uy, up, ..., u, € HI(P, ) such that

m m

Hu,-:O if p=2 and Hﬂ(ui):o if p>2, (%)

i=1 i=1
where  is the Bockstein homomorphism. The smallest integer m such that relation (x) is satisfied is referred to as the
cohomology length of P, and is denoted by chl(P) throughout. Several papers on the calculation of the cohomology
length have appeared; see, for instance, O. Kroll [3], J.-P. Serre [8], T. Okuyama and H. Sasaki [6], P.A. Minh [5] and
E. Yalgin [10].

Suppose P is a p-group which is not p-central (not all elements of order p belong to the center). Define a repre-

senting set S of P as a subset that includes at least one non-central element from each maximal elementary Abelian
subgroup of P. Then define s(P) as the minimum cardinality of a representing set in P.

Theorem 1.1. (E. Yalcin [10]) If P is an extra-special p-group which is not p-central, then chl(P) < s(P). Moreover,
if P has a self-centralizing maximal elementary Abelian subgroup, then equality holds.

Theorem 1.1 was applied in [10] to prove the following theorem, which yields the best known bound for chl(P):

Theorem 1.2. (E. Yalgin [10]) If P is a p-group and k = dimg, H'(P, Fp,), then
chi(P)<p+1
if k <3, and for k > 3 we have
chl(P) < (p* + p — D22,
In this Note, we give an inductive bound when p is an odd prime which yields a new lower bound. As such, we

solve Problem 7.2 of E. Yalgin [10].
The precise statement of the main result will be made in the next section.

2. Extra-special p-groups and statement of the main result

Let P be an extra-special p-group, which in this Note we define by the following group extension:
l—Z/p+—> Pr—Vi>1,

V being a vector space over F,. Put k = dimp, V.

If P = P* x Z/ p for some subgroup P* C P, then chl(P) = chl(P*) and s(P) = s(P*). Without loss of generality
we suppose that P is not of this form, that is, P has no proper direct factors. Then, if P is represented by the extension
class [a] € H? (V,F)), there exists a basis such that [«] is of one of the following forms (cf. P.A. Minh [5]):

for p =2 and k = 2n, @QX T +XoYr,+---+ X, Y, or

for p=2and k =2n, 0) X3+ Y2+ X1Y1 + XoYo + -+ Xy Vs
forp=2andk=2n+1, (© X;+X Y1 +X2Vo+ - + X,V

for p > 2 and k = 2n, DX\ "+ XY+ -+ X, Y, or

for p > 2 and k = 2n, @ BX)+X1Y1+XoYo+---+ X, Yy,
forp>2andk=2n+1, f)BXo)+X1V1+XoV2o+ -+ XY,
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When P is an extra-special group of type (e) or (f), it is well known that chl(P) < p.In cases (a) and (d), Cp(E) = E
for any maximal elementary Abelian subgroup E < P, so that equality holds in Theorem 1.1. For case (a), E. Yal¢in
obtained the best possible bound in [10]. Theorem 1.2 represents a general bound which is valid for all cases. In that
same paper, Problem 7.2 asks for a calculation of s(P) = chl(P) in terms of n and p for groups of type (d).

This calculation is the objective of the present note, so as to obtain at the same time a bound for chl(P) of such a
group P, and more generally, of any p-group for odd p.

Theorem 2.1. Let P be an extra-special p-group of order p* 1 where p is odd. If P is of type (d), we have p"~2(p>+
(V2 —=1)=5/2) +1<chl(P) < p"2(p*+ p — 1). Moreover,

p""%(chl(Py) — 1) + 1 < chl(P) < p"~2 - chl(Py),

where P, is an extra-special p-group of type (d) with order p°.

In the rest of this Note, we will only consider extra-special groups of type (d); if P is a p-group, p odd, which is
not elementary Abelian and k = dimp » (HY(P,F »)) € {2n,2n + 1}, then P has a factor group P, isomorphic to some
group of type (d), (e) or (f). So chl(P) < chl(P,).

3. Proof of the main result

Suppose P = P, is a group of type (d), and note that | P,| = p>**!. Suppose W = W(2n — 1, p) is the variety
in the (2n — 1)-dimensional projective space PG(2n — 1, p) over IF,, which is determined by the bilinear alternating
form induced by the quadratic form displayed in (d) of the previous section. So W is a ‘non-singular symplectic polar
space’. Define s(WV) as the minimal cardinality of a set of points of PG(2n — 1, p) which meets every maximal totally
isotropic subspace (‘generator’) of V. Then it holds that s(P,) = s(JV) [11]. Note that the Witt index of W is n, so
that (n — 1) is the dimension of a generator of Y. An easy counting argument! shows that the number of points of
such a set is at least p” 4 1 [9], and in case of equality, one speaks of an ‘ovoid’ of W(2n — 1, p). More generally, if
B is a point set of W(2n — 1, p) meeting each generator, call it a blocking set.

Theorem 3.1. (See, e.g., the survey paper [9] for (i) and [2] for (ii).)

i) WQ@2m + 1, p) has no ovoids form > 1.
(i) sSOV3, p) = p*+ (V2 - 1)p—3/2.

We need a good bound for the size of a blocking set of symplectic polar spaces, which we will try to obtain now.

Let W(Q2r —1, p) CW(Q2n —1, p), where we assume r > 2 and n > 3. Suppose 7 is the symplectic polarity defined
by W(2n — 1, p). Now let 7 C W(2n — 1, p) be a projective subspace of PG(2n — 1, p) of dimension n —r — 1, such
that W(2r — 1, p) C &7 (W(2r — 1, p) has no point in common with 7). Suppose B is a blocking set of W(2r — 1, p).
Define B* as the set of points of WW(2n — 1, p) which are on lines that contain a point of B and one of 7, but not
contained in 7 (B* is a ‘truncated cone’ with base 7 and vertex B). Then one observes two facts:

. n—r_1 _
(i) |B*|=5—=(p—DIB|+|B|=|B|p"™";

(ii) B* contains at least one point of any generator of W(2n — 1, p).

Now put 2r — 1 = 3, and consider a point x of W(3, p). Let y be a point of W (3, p) which is not collinear with x
on W(3, p). For any point z of W(3, p), denote by z* the set of points which are collinear with z on W(3, p)
(including z). Also, if A is a point set of W (3, p), write A for Ngepa’, and A+ for (A1)L. Then clearly

B=((x"\ e, y1H) U, v \ (1)

I Let S be a set of points of W(2n — 1, p) meeting every generator. Count in two ways the number of pairs (p, ), where p € S, 7 is a generator
and p € m. Then |S|-(number of generators containing x) > (total number of generators)-1.
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is a blocking set of W(3, p) of size p*> + p — 1. So we get
|B*| — pn—Z(pZ + p— 1)’

and hence sOV(2n — 1, p)) is at most p”"~
aresult of [10].)

2. s(W(@3, p)). (Note that as thus we have obtained an alternative proof of

Now suppose that for k < n, k € N\ {0, 1}, sOV(2k — 1, p)) = p*2(sOWV @3, p)) — 1) + 1.

We will use this induction hypothesis to show that the inequality also holds for k = n. The following argument was
first made by K. Metsch in a slightly more particular setting (cf. [4, p. 284]), but was never published.

Let B* be a blocking set of W(2n — 1, p) which does not contain a blocking set of strictly smaller size. Then there
is a generator of W(2n — 1, p) that meets B* in a unique point x. Each of the « := p"~! + ... 4+ p? + p other points
of this generator sees in its quotient a blocking set of a WW(2n — 3, p), so besides x at least B := pr3(sW@3, p) —1)
further points. As every point of B* \ {x} is counted at most y := p" 2+ ---+ p+ 1 times, we have |B*\ x| > af/y.

This proves the main result.

Note that the geometrical results of this section are still valid if we replace the field I, by F;, when ¢ is any odd
prime power.

The minimal size of a blocking set of W(3, 3), respectively W (3, 5), equals 11, respectively 29 | see [1, Re-
mark 10]. So for these cases, we have 10 x 3" 2 + 1 <sOV(2n — 1,3)) < 11 x 3" 2 and 28 x 5" 2 4+ 1 <
sOWV(2n —1,5)) <29 x 5"2.
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