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Abstract

We introduce here a new finite volume scheme which was developed for the discretization of anisotropic diffusion problems; the
originality of this scheme lies in the fact that we are able to prove its convergence under very weak assumptions on the discretization
mesh. To cite this article: R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un nouveau schéma volumes finis pour les probléemes de diffusion anisotrope : analyse de convergence. On introduit ici un
nouveau schéma volumes finis, construit pour la discrétisation de problemes de diffusion anisotrope sur des maillages généraux ;
I’originalité de ce travail réside dans sa preuve de convergence, qui ne nécessite que des hypotheses faibles sur le maillage. Pour
citer cet article : R. Eymard et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The scope of this Note is the discretization by a finite volume method of anisotropic diffusion problems on general
meshes. Let §2 be a polygonal (or polyhedral) open subset of R (d = 2 or 3); let M4 (R) be the set of d x d symmetric
matrices. We consider the following elliptic conservation equation:

—div(AVu)=f in £2, e
with boundary condition
u=0 onasf2 (2)

with the following hypotheses on the data:

A is a measurable function from £2 to My (R), and there exist A and A such that

0 <A< Xiand Sp(A(x)) C[A, A] for a.e. x € £2. The function f is such that f € L3(£2). 3)
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In (3), Sp(B) denotes for all B € M (R) the set of the eigenvalues of B. We consider the following weak formulation
of problem (1):

u € HY(£2),
/A(x)Vu(x)~Vv(x)dx=/f(x)v(x)dx, Vv € H} (). “)
2

2

2. Discrete functional tools

A finite volume discretization of £2 is a triplet D = (M, &, P), where:

— M is a finite family of non-empty convex open disjoint subsets of 2 (the “control volumes”) such that 2 =
Ukem K.Forany K € M, let 3K = K \ K be the boundary of K and mg > 0 denote the measure of K.

— £ is a finite family of disjoint subsets of £2 (the “edges” of the mesh), such that, for all ¢ € £, ¢ is a non-empty
closed subset of a hyperplane of R?, which has a measure m, > 0 for the (d — 1)-dimensional measure of o.
We assume that, for all K € M, there exists a subset £x¢ of £ such that 0K = Ugegk o. We then denote by
My ={K € M,o € Eg}. We then assume that, for all o € &, either M, has exactly one element and then
o C 952 (boundary edge) or M, has exactly two elements (interior edge). For all o € £, we denote by x, the
barycenter of o.

— P is a family of points of §2 indexed by M, denoted by P = (xx) ke, such that xg € K and K is star-shaped
with respect to xg .

The following notations are used. The size of the discretization is defined by: hp = sup{diam(K), K € M}. For all
K € M and o € £k, we denote for a.e. x € 0 by ng  the unit vector normal to o outward to K. We denote by dk
the Euclidean distance between xx and o. The set of interior (resp. boundary) edges is denoted by Ein (resp. Eext),
thatis &y = {0 € E; 0 ¢ 382} (resp. Eext = {0 € €; 0 C 382}). The regularity of the mesh is measured through the
parameter

min(dK,o s dL,O')

szmin{ oeé'int,/\/loz{K,L}}.

max(dK,a s dL,a) ’
A family F of discretizations is regular if there exists 6 > 0 such that for any D € F, 6p > 6.
Let Xp = RM x R be the set of all u := ((uK)kem, (Uo)seg), and let Xp o C Xp be defined as the set of
all u € Xp such that u, = 0 for all 0 € . The space Xp ¢ is equipped with a Euclidean structure, defined by the
following inner product:

My

(vo —vg)(Wo — wk) ®)

Yo.w e (X’ wlp= 30 3

KeMoelg ’

and the associated norm: |u|; p = ([u, ulp)l/2. Let Hpa(82) C L%(£2) be the set of piecewise constant functions
on the control volumes on the mesh M which is equipped with the following inner norm: |ull; ¢ = inf{||v]l| D,
v E€ Xp,o, Pmv =u}, where for all u € Xp, we denote by Prqu € Hpq(§2) the element defined by the values
(u k) kem (we then easily see that this definition of || - ||; A4 coincides with that given in [1] in the case where we set
dxr =dk s +dp o for all o € &y with M, ={K, L}). For all ¢ € C(£2,R), we denote by Pp(¢) the element of
Xp defined by ((¢(xk))kem, (¢ (X6))oee)-

3. The finite volume scheme and its convergence analysis

The finite volume method is based on the discretization of the balance equation associated to Eq. (1) on cell K. It
requires the definition of consistent numerical fluxes (FI?U) KeM,o e, On the edges of the cells, meant to approximate
the diffusion fluxes —AVu - ng, where ng is the unit outward normal to 0K .
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Let F be a family of finite volume discretizations; for D = (M, E,P) € F, K € M and o € £, we denote by F D
a linear mapping from Xp to RE. The family ((FI?U) KeM )DeF is said to be a consistent family of fluxes if for any
’ oek

function ¢ € C2(R?, R),

1
lim max —|F P AgVo -ng ,dy| =0, 6
hD—>0Ke./\)§l 2. (Pp(e)) + / kVe - ng o V’ (6)
UEK o

where Ag = E / x A dx. In order to get some estimates on the approximate solutions, we need a coercivity property:

the family of numerical fluxes ((FI?J) KeM )Der 1s said to be coercive if there exists & > 0 such that, for any
’ e€
D=(M,E,P)eF and forany u € XD’(()T,
DY (wk —uo)FE ) = alullf p. %

KeMoe€g
Finally the family of numerical fluxes ((F ,? o) KeM)Der is said to be symmetric if for any D = (M, £, P) € F,
’ &
the bilinear form defined by ’c

wv)p= Y > Fi vk —vs). Y v)eXp,,
KeMoel

is such that
(., v)p = (v.u)p, V(u,v)eXp,.

The finite volume scheme may then be written by approximating the integration of (1) in each control volume, and
requiring that the scheme be conservative:

Find MD = ((u?)KeM’ (MOD)GGS) € XD,O; (8)
Z F,?U(MD):/f(x)M, VK € M: ©
O'EgK K

FRo(uP) + FPy (uP) =0, Vo €&, Mo = (K, L) (10)

or, in equivalent form:

Find u® = ((u®) g crp- (4F), ce) € Xpo st (uP v)p = / f@)Ppu(x)dx, Yu e Xp . (11

Theorem 3.1. Under assumptions (3), let u be the unique solution to (4). Consider a regular family of admissible
meshes F, along with a family of consistent, coercive and symmetric fluxes ((FK ) KeM )Yper. Then, for all D € F,

there exists a unique uP e Xp o solution to (9) or (11), and PMu converges to u solutzon of (4) in L1(£2), for
all g €[1,400) ifd=2andall g €[1,2d/(d —2)) ifd > 2, as hp — 0. Moreover, Vpu € HM(.Q)d, defined by
mg (VpuP)g = degk Mgy (U — Uk )Nk o forall K € M, converges to Vu in L2(£2)4.
Sketch of proof. Taking v = uP in (11), we get the following a priori estimate on uP:
2

a[[uP]} p <12 lupl20)-
The discrete Sobolev inequality [1] holds thanks to the above definition of 6p, that is, there exists C > 0 depending
only on g, £2 and 6 such that: ||PMuD||Lq(Q) < C||PMuD||1,M. Therefore, thanks to the fact that ||PMuD||LM <
4P| 1,D, We obtain that: || PMMD Il < luP| 1.D < g” S lz2(g2y» which yields the existence and uniqueness of uP
Then, prolonging by 0 the function Pyu™ outside of £2, we get the estimate

| PateP ¢+ &) = PrqdP| 1 gy < 181(d m(2)) P[P, . VE R
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We can therefore apply the Fréchet—Kolmogorov theorem, which is a compactness criterion in L' (R?). Again using
the discrete Sobolev inequality, we get that, up to a subsequence, Py uP converges, for all g € [1, +00) if d =2 and
allg €[1,2d/(d —2))ifd > 2,in L9 (R?) to some function &, with i (x) = 0 for a.e. x € R? \ §2. Furthermore, in the
spirit of Lemma 2 of [4], we can show that VpuP converges to Vi weakly in L2(R%)4. Therefore ii € HO1 (£2). To
complete the proof of the theorem, we pass to the limit #p — 0 on the weak form of the scheme: for ¢ € C2°(£2), we

take v = Pp(¢) in (11). Using the symmetry and the consistency (6) of the fluxes FI?U (¢), we obtain that u verifies

(4) with v = ¢. Therefore, by uniqueness, # = u and the whole sequence converges. The strong convergence of VpuP

to Vu is obtained, using (7), the convergence of (uD, uD)D to f o Vi - AVudx and following the principles of the
proof of Lemma 2.6 in [5]. O

4. An example of consistent, coercive and symmetric family of fluxes

Let us first note that the case of the classical four point finite volume schemes on triangles (also based on a
consistent coercive and symmetric family of fluxes, see [6]) is included in the framework presented here. However,
for general meshes or anisotropic diffusion operators, the construction of an approximation to the normal flux is more
strenuous [2,3,7]; it is often performed by the reconstruction of a discrete gradient, either in the edges of the cell, or
in the cell itself. We propose the following numerical fluxes, defined for u € Xp by

R o (1) Rg o (1) ng,
Fg.o(u)=—mg, <VDMK < Agng o +04K($ - Z mf’/L(x"' —xXg) =

dk o ; dK,a’ mg
o EgK

where Ak is the mean value of the matrix A(x) for x € K, Vpug is defined in Theorem 3.1, Rx o (1) =us —ug —
Vpug.(xs — xk), and (ag)genr 1s any family of strictly positive real numbers, bounded by above and below. We
thus get a consistent, coercive and symmetric family of fluxes, in the above stated sense. In fact, in the same spirit
as in the scheme derived in [5] for meshes satisfying an orthogonality condition, the above expression for Fx 4 («) is
deduced from the variational form of the scheme, which is based on the following inner product:

Mg
dK o

oelg !

(wv)p= [mKVDuK~AKVDvK tog Y RK,J(M)RK,a(v)], Vu,v € Xp.
KeM
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