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Abstract

In this Note, we study the asymptotic behaviour of a new class of penalized M-estimators, built with an �1 type penalty. We
prove that adding an �1 constraint enables to construct adaptive estimators, in the sense that the estimators converge at the optimal
rate of convergence without prior knowledge of the regularity of the function to be reconstructed. Moreover, we show how the usual
issues in nonparametric estimation, such as density estimation, estimation of a regression function and inverse problem estimation
can be handled with this methodology. To cite this article: J.-M. Loubes, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Contrainte �1 et applications en estimation non-paramétrique. Nous étudions les propriétés asymptotiques d’une nouvelle
classe de M-estimateurs pénalisés par une pénalité de type norme �1. Nous montrons que nous pouvons ainsi construire des
estimateurs adaptatifs, c’est-à-dire convergeant à la vitesse optimale sans connaître la régularité de la fonction à estimer. Nous
montrons que ce procédé général s’applique dans le cadre du modèle de régression, des problèmes inverses et pour l’estimation de
densités. Pour citer cet article : J.-M. Loubes, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Penalized empirical risk minimization procedures have been extensively studied in the nonparametric statistical
literature and enable to construct a wide range of estimators, see [6,1] or [5] for a general overview. However, their
main drawback is to heavily rely on optimal choices of the trade-off parameters, balancing the two contributions given
on the one hand by the loss-function, and on the other hand by the penalty. Indeed, this optimal choice depends on
regularity assumptions over the function to be estimated. In this Note, we present a new methodology which consists
in minimizing a contrast function together with an �1 penalty. The sparsity property of the �1 norm enables to build
adaptive estimators, converging at the optimal rate of convergence without any prior regularity assumption.

Sparsity is a familiar notion in statistics and beyond, which expresses the idea that the information of a signal is
concentrated in few coefficients. �p norms track sparsity for p < 2, with smaller p giving more stringent measures. So
adding an �1 penalty models the prior constraint that the signal has a sparse representation in the given basis, yet with
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more flexibility than a penalty on the number of nonzero coefficients. Contrary to differentiable penalties (p � 2), for
which adaptivity implies selecting the smoothing sequence among a set of possible choices, there is an optimal choice
of the trade-off parameter, which does not depend on the unknown regularity of the parameter of interest. Hence �1

norm penalty is used in estimation in [4], in classification in [3] and in inverse problems in [2].
We first present, in Section 2, the general penalized M-estimation procedure and provide a general inequality which

stresses the properties of the �1 penalty. Then, we apply in Section 3 this methodology in nonparametric estimation.

2. M-estimation procedure with an �1 penalty

Consider X1, . . . ,Xn independent random observations with values in a measurable space X . Let Pi be the distri-
bution of Xi , depending on an unknown function f0, lying in a metric space F endowed with the metric d . Our aim
is to estimate this function f0. Define P̄ = 1

n

∑n
i=1 Pi and let Pn = 1

n

∑n
i=1 δXi

be the empirical distribution. Assume
that there exists an orthonormal basis ϕ1, . . . , ϕn, with respect to the empirical measure and let ‖ · ‖n and 〈· , ·〉n be
respectively the empirical norm and the empirical scalar product. Then any function f ∈ F can be decomposed onto
this basis as f = ∑n

j=1 αjϕj with αj = 〈f,ϕj 〉n. Write also f0 = ∑n
j=1 αj,0ϕj .

For a loss function γf :X → R for any f ∈F , and a smoothing sequence λ2
n, define the penalized M-estimator as

f̂n = arg min
f ∈F

{∫
γf dPn + λ2

n‖f ‖1

}
. (1)

We want to prove that an �1 penalty enables us to find an optimal choice of the smoothing sequence without knowing
the regularity of the true function f0.

To find the rate of convergence of the estimator, we need two ingredients. First we need to study the asymptotic
behaviour of

∫
γf dP̄ . We assume that there exists a constant c such that

∀f ∈ F ,

∫
(γf − γf0)dP̄ � cd2(f,f0). (2)

Then, we need to control the behaviour of the empirical process
√

n
∫

γf d(Pn − P̄ ). More precisely we need to prove
that there exists a constant C such that

P
(∣∣∣∣

∫
γf d(Pn − P̄ )

∣∣∣∣ � Cλ2
n‖f − f0‖1

)
→ 0. (3)

Let f� ∈ F be an oracle, i.e. an approximation of the function f0 whose rate of convergence is known (and depends
on the unknown smoothness of f0). Now, consider the set of indices Jn of cardinality Nn, and note that the �1 penalty
can be split into two terms IN(.) and IM(.) defined by

‖f ‖1 =
n∑

j=1

|αj | =
∑
j∈Jn

|αj | +
∑
j /∈Jn

|αj | := IN(f ) + IM(f ).

We obtain the following bound with high probability

cd2(f̂n, f0) � d2(f�, f0) + (1 + C)λ2
nIN(f� − f̂n) + 2λ2

nIM(f�). (4)

This decomposition is the key to adaptive estimation. Indeed the distance between the estimator and the true function
is bounded by an approximation term d2(f�, f0), the bias of the oracle and two approximation terms IN(f� − f̂n) and
IM(f�). The first term represents the approximation error for the coefficients in Jn while the second term stands for
the remainder term of the oracle in J c

n . These two terms are balanced depending on the size of Jn. We point out that
this bound provides a control of the estimation error, with respect to the distance given by the observation design. It is
not a major drawback since norm equivalence results under entropy conditions can be used to extend this result. We
refer to [6] for more references.
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3. Application to nonparametric estimation problems

3.1. Nonparametric regression

Consider y1, . . . , yn real-valued observations from the standard regression model

yi = Φ(f0)(ti) + εi, i = 1, . . . , n, (5)

where f0 ∈ F is the function to be recovered, Φ :F → F is a known selfadjoint operator and εi are i.i.d. realizations
of an observation noise. Note Xi = (yi, ti) and take Pn as the distribution of X1, . . . ,Xn.

3.2. Direct estimation model

If Φ = id, (5) is the classical regression model. Take γf (y, t) = (y − f (t))2. Hence the �1 penalized estimator can
be written as

f̂n = arg min
f =∑n

j=1 αj ϕj

{
1

n

n∑
i=1

∣∣yi − f (ti)
∣∣2 + 2λ2

n

n∑
j=1

|αj |
}

. (6)

This estimator has been studied in [4]. In this case, for λ2
n = c

√
logn

n
, (4) can be written as

‖α̂n − α0‖2
n � 4

(‖α∗ − α0‖2
n + 4λ4

nNn

)
.

Theorem 1. If there exists a smoothness parameter s and a constant M such that
∑n

j=1 α
2/(2s+1)

j,0 � M , then we get

P
(‖f̂n − f0‖2

n � cn−2s/(2s+1)
)
� c exp

[
− logn

c2

]
. (7)

3.3. Inverse model

In the following, suppose that Φ is a nontrivial linear operator. We will denote Φ∗ its adjoint. As often Φ is not
of full rank, so the singular value decomposition (SVD) is a useful tool. Let (λj ;ψj ,ϕj )j�1 be a singular system
for a linear operator Φ , that is, Φϕj = λjψj and Φ∗ψj = λjϕj ; where {λ2

j }j�1 are the nonzero eigenvalues of the
selfadjoint operator Φ∗Φ (and also of ΦΦ∗), considered in decreasing order. We can write

Φf =
n∑

j=1

λj 〈f,ϕj 〉ψj , Φ∗y =
n∑

j=1

λj 〈y,ψj 〉ϕj .

Note that for large j , the term 1/λj grows to infinity. Thus, the high frequency errors are strongly amplified. This
amplification measures the difficulty of the inverse problem, the faster the decay of the eigenvalues, the more difficult
is the inverse problem. So we assume that there exists an index t such that λj = O(j−t ) for some t , called the index
of ill-posedness of the operator Φ .

Take λn = (μj )j=1,...,n and γf such that the corresponding estimator is defined by

f̂n = arg min
f =∑n

j=1 αj ϕj ∈F

[
n∑

j=1

∣∣∣∣
〈
y − Φ(f ),

ψj

λj

〉
n

∣∣∣∣
2

+ 2
n∑

j=1

μj |αj |
]

=
n∑

j=1

α̂j,nϕj . (8)

For a choice μj = c
λj

√
logn

n
, the bound (4) can be written as

‖f̂n − f0‖2
n � c‖f� − f0‖2

n + 4c
logn

n

∑
j∈Jn

1

λ2
j

. (9)
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Theorem 2. If there are two parameters s and 0 � p � 2 such that

f0 ∈ Xs,p =
{

f =
∑
j

αjϕj ,

n∑
j=1

jp(s+1/2−1/p)α
p
j � 1

}
,

then for ill-posed problems we get

P
[
‖f̂n − f0‖2

n �
(

n

logn

)−4s/(2s+2t+1)]
� c exp

[
− logn

c2

]
.

Here again, the estimator converges at the minimax rate of convergence for the sets Xs,p for ill-posed inverse problems.

3.4. Density estimation

Suppose we observe X1, . . . ,Xn a random independent sample of X with unknown density f0 = dPdλ ∈ F , a set
of density. To every density f ∈ F , we associate the variable γ = logf + b(γ ) lying in the correspondent functional
class Γ , with b(γ ) = log

∫
eγ (x) dλ(x). So we have b(γ ) − b(γ0) = K(f,f0), the Kullback–Leibler information. To

apply the previous framework, we first project the model onto a finite approximation space Vj1 using a wavelet basis
(ψjk)(j,k). The estimator can be written

γ̂n = arg max
γ=∑

j<j1

∑2j −1
k=0 βjkψjk

(
1

n

n∑
i=1

γ (Xi) − b(γ ) − λ2
n‖γ ‖1

)
.

Set γ� the projection of γ0 onto Vj1 . For λ2
n � c

√
logn

n
with c a constant, (4) can be written as

||γ̂n − γ0||2
1 + OP(1)

+ λ2
n‖γ̂n‖1 � λ2

n‖γ̂n − γ�‖1 + λ2
n‖γ�‖1.

The following theorem proves the optimality of the estimation procedure for Besov spaces Bs
p∞([0,1]), s > 1/p.

Theorem 3. Assume that ∃0 < C < ∞, supγ∈Γ |γ | � C and γ0 ∈ Bs
p∞([0,1]), with s > 1/p. For 2j1 = O( n

logn
)

‖γ̂n − γ0‖2 = OP

(
n

logn

)−2s/(2s+1)

.

References

[1] A. Berlinet, G. Biau, L. Rouvière, Optimal L1 bandwidth selection for variable kernel density estimates, Statist. Probab. Lett. 74 (2005)
116–128.

[2] A. Cohen, M. Hoffmann, M. Reiß, Adaptive wavelet Galerkin methods for linear inverse problems, SIAM J. Numer. Anal. 42 (4) (2004)
1479–1501.

[3] B. Efron, T. Hastie, I. Johnstone, R. Tibschirani, LARS, Ann. Statist. 32 (2) (2004) 407–499.
[4] S. Loubes, J.-M. van de Geer, Statist. Neerlandica 56 (4) (2002) 454–479.
[5] B. Silverman, On the estimation of a probability density function by the maximum penalized likelihood method, Ann. Statist. 10 (1982)

795–810.
[6] S. van de Geer, Applications of Empirical Process Theory, Cambridge Univ. Press, Cambridge, 2000.


