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Abstract

In this Note we generalize and improve results proven for acoustic operators given by Najar in 2003. It deals with the behavior
of the integrated density of states of random divergence operators of the form Hω = ∑d

i,j=1 ∂xi ai,j (ω, x)∂xj on the internal band

edges of the spectrum. To cite this article: H. Najar, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Des résultats sur le comportement de la densité d’états integrèe de l’opérateur de divergence aléatoire. Dans cette Note
on généralise et en améliore des résultats prouvés pour les opérateurs acoustique par Najar (2003). Il concerne le comportement de
la densité d’états intégrée de l’opérateur de divergence aléatoire ayant la forme Hω = ∑d

i,j=1 ∂xi ai,j (ω, x)∂xj aux bords internes
du spectre. Pour citer cet article : H. Najar, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

On considère l’opérateur de divergence aléatoire de la forme

Hω = −∇A−1
ω ∇,

avec

Aω = A0(x) +
∑
γ∈Zd

ωγ B(x − γ ),

où

– A0 : Rd →Md(R) est Z
d -périodique et uniformément elliptique i.e. il existe C > 0 tel que, ∀x ∈ R

d ,
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C
· Id � A0(x) � C · Id;

– B : Rd →Md(R) est continuement différentiable vérifiant
(i) soit ∃ν > d + 2 et ∃C > 0 tel que

1

C
1|x|�1/CId � B(x) � C

(
1 + |x|)−ν

Id;
(ii) soit ∃ν ∈ (d, d + 2] et ∃C > 0 tel que

1

C

(
1 + |x|)−ν

Id � B(x) � C
(
1 + |x|)−ν

Id;
– (ωγ )γ∈Zd est une famille de variables aléatoires non constantes, indépendantes et identiquement distribuées pre-

nant des valeurs dans [0,1]. On suppose que

lim
ε→0+

log | log P({ω0 ∈ (1 − ε,1]})|
log ε

= −κ, κ ∈ [0,+∞[. (1)

L’objectif de cette Note est de donner le comportement de la densité d’états intégrée aux bords des lacunes internes du
spectre de Hω. On distingue entre les cas (i) et (ii). On démontre qu’il y a deux régimes possibles de comportement,
classique et quantique. La valeur du paramètre κ dans (1) est à l’origine de la transition entre ces deux régimes.

1. Introduction

We consider the random divergence operator

Hω = −∇A−1
ω ∇ =

d∑
i,j=1

∂xi
ai,j (ω, x)∂xj

; (2)

where Aω is an elliptic, d ×d-matrix valued, Z
d -ergodic random field. i.e there exists some constant ρ∗ > 1, satisfying

1

ρ∗
|ξ |2 � 〈Aωξ, ξ 〉 � ρ∗|ξ |2, ∀ξ ∈ C

d . (3)

This operator describes a vibrating membrane in the random medium as well as in the particular case when Aω =

ω · Id (Id is the identity matrix and 
ω is a real function) we get the acoustic operator [2,9,10]. The interest of this
operator both from the physical and the mathematical point of view is known [14].

We denote by Hω,Λ the restriction of Hω to Λ with self-adjoint boundary conditions. As Hω is elliptic, the resolvent
of Hω,Λ is compact and, consequently, the spectrum of Hω,Λ is discrete and made of isolated eigenvalues of finite
multiplicity [12]. We define

NΛ(E) = 1

vol(Λ)
· #{eigenvalues of Hω,Λ � E}. (4)

Here vol(Λ) is the volume of Λ in the Lebesgue sense and #E is the cardinal of E.
It is shown that the limit of NΛ(E) when Λ tends to R

d exists almost surely and is independent of the boundary
conditions. It is called the integrated density of states of Hω (IDS as an acronym). See [6].

1.1. The model

We consider that Aω has an Anderson form i.e.

Aω = A0(x) +
∑
γ∈Zd

ωγ B(x − γ );

where
(A.0)

– A0 : Rd →Md(R), Zd -periodic and uniformly elliptic i.e. there exists C > 0 such that, ∀x ∈ Rd ,
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C
· Id � A0(x) � C · Id .

– B : Rd → Md(R) continuously differentiable such that for C0,k , the box of side length 2k + 1 and has 0 as a
center, there exists 0 � g− ∈ L2(C0,0) (g− non-identically zero) such that for all γ ∈ Z

d and a.e. x ∈ C0,0 we
have,
(i) either ∃ν > d + 2 and ∃C > 0 such that

g−(x − γ )Id � B(x − γ ) � C

(1 + |γ |)ν Id ;
(ii) or ∃ν ∈ (d, d + 2] and ∃C > 0 such that

1

C

(
1 + |γ |)−ν

Id � B(x − γ ) � C · (1 + |γ |)−ν
Id .

We assume also that in the two cases we have∥∥t∇ · B(x)
∥∥ � C · (1 + |x|)−ν−1

.

– (ωγ )γ∈Zd is a family of random variables independently and identically distributed taking values [0,1]. We sup-
pose that the common probability measure is supported in [0,1], and

lim
ε→0+

log | log P({ω0 ∈ (1 − ε,1]})|
log ε

= −κ, κ ∈ [0,+∞[. (5)

By this, Hω is a measurable family of essentially self-adjoint and ergodic operators on L2(Rd) with a domain
D(Hω) = C∞

0 (Rd) [2,14].

1.2. The main assumptions

It is convenient to consider Hω as a perturbation of some periodic operator. For this we set,

H1 = −∇A−1
1 ∇ with A1 = A0 +

∑
γ∈Zd

B(· − γ ).

By this

Hω = H1 + �Hω

with

�Hω = Hω − H1 = −∇
(

A−1
ω

( ∑
γ∈Zd

ωγ B(x − γ )

)
A−1

1

)
∇ � 0,

〈�Hωu,u〉 =
∑
γ∈Zd

ωγ

〈
B(x − γ )A−1

1 ∇,A−1
ω ∇u

〉; ∀u ∈D(Hω).

Here for any γ ∈ Z
d we set ωγ = (1 − ωγ ) and the positivity of �Hω is a consequence of the fact that Aω � A1.

We notice that H1 is a Z
d -periodic operator. We denote by n its IDS.

As we study the internal Lifshitz tails it is natural to assume that H1 has a spectral gap below E+. More precisely
we assume that:
(A.1) There exists E+ and δ > 0 such that σ(H1) ∩ [E+,E+ + δ) = [E+,E+ + δ) and σ(H1) ∩ (E+ − δ,E+] = ∅.
As, �Hω � 0, the spectrum Σ of Hω contains an interval of the form [E+,E+ + a] (a > 0) [5]. As we are interested
in the behavior of the IDS in the neighborhood of E+, we require that E+ remains always the edge of a gap for Σ ,
one requires that the following assumption holds.
(A.2) There exists δ > 0 such that Σ ∩ [E+ − δ,E+) = ∅.

Remark 1. In [3] the existence of open spectral gaps in the spectrum of certain periodic acoustic operators for d = 2
and 3 is studied and in [4] the band-gap structure of the spectrum of the elliptic operators in divergence form for d � 2
is considered.



370 H. Najar / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 367–372
By adding a disorder parameter g in the equation which defines Aω i.e. Aω = A0 + g
∑

γ∈Zd ωγ B(· − γ ), we can
choose g small enough so that the spectral gap in σ(H1) will not be closed after the perturbation [2].

2. Results and discussions

The main result of this Note is the following:

Theorem 2.1. Let Hω be the operator defined by (2). We assume that (A.1) and (A.2) hold. Then if

1. B is of short range type then,

lim
ε→0+

log(n(E+ + ε) − n(E+))

log ε
= d

2
⇔ lim

ε→0+
log | log(N(E+ + ε) − N(E+))|

log ε
= −

(
d

2
+ κ

)
. (6)

2. B is of long range type then,

lim
ε→0+

log(n(E+ + ε) − n(E+))

log ε
= d

2
⇒ lim

ε→0+
log | log(N(E+ + ε) − N(E+))|

log ε

= − sup

(
d

2
+ κ,

d

ν − d

)
. (7)

If κ + d
2 < d

ν−d
then,

lim
ε→0+

log | log(N(E+ + ε) − N(E+))|
log ε

= − d

ν − d
. (8)

Now, let us comment the result. One notices that the behavior of the random variables is linked up to the Lifshitz
exponent, and determines if one is located in a classical regime or in a quantum one; i.e. if the kinetic energy intervenes
or if it does not in the Lifshitz exponent. In the long range case, one sees that it depends on the value of κ , the Lifshitz
asymptotics are classical (for κ < d

ν−d
− d

2 ) or quantum (for κ > d
ν−d

− d
2 ). In other terms, in the case of the long

range potential, the Lifshitz exponent depends on the uncertainty principle, i.e. on the kinetic energy only in the case
when ( d

ν−d
< κ + d

2 ). In contrast, when ( d
ν−d

> κ + d
2 ), then the Lifshitz asymptotics are not governed by the same

considerations. This is due to the fact that in the long range case as the potential decreases slowly and locally, the
potential is an empirical average of random variables. This leads to the fact that its effect is more important and more
influencing than the spatial extension of the considered state.

From what has been said previously, one concludes that the value of κ is responsible for the transition between
those two regimes.

The proof of the main result is now classic and based on the technique of periodic approximations which where
originally stated by Klopp in [7]. It is quite close and follows the same steps used in [9,10] and [8] from which this
work is inspired. Giving the main changes, we omit details and we refer the reader to the above references.

2.1. The lower bound

By assumption, there is a spectral gap below E+ of length at least δ > 0. Thus, for ε < δ we have

N(E+ + ε) − N(E+) = N(E+ + ε) − N(E+ − ε).

By this, it suffices to lower bound N(E+ + ε) − N(E+ − ε). For N being large, we will show that Hω,ΛN
(Hω,ΛN

is Hω restricted to ΛN with Dirichlet boundary conditions) has a large number of eigenvalues in [E+ − ε,E+ + ε]
with a large probability. For this, we will construct a family of approximate eigenvectors associated to approximate
eigenvalues of Hω,ΛN

in [E+ − ε,E+ + ε]. These functions can be constructed from a Floquet eigenvector ϕ(x, θ) of
H1 associated with E+. Locating this eigenvector in θ and imposing to ωγ to be small for γ in some well chosen cube,
one obtains an approximate eigenfunction of Hω,ΛN

. Locating the eigenfunction in x in several disjointed places, we
get several eigenfunctions, two by two orthogonal. The subtlety is in the good choice of the size of the cube. Using the
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same computation done in [8–10] we get that, in the case of the short range we have to estimate the double logarithm
of:

P

({
ω;

∑
γ∈Λα(εs)

ωγ

(
1 + |γ |)−ν � ε1+α

2

})
� P

{
ω; ∀γ ∈ Λα(εs);ωγ � ε1+α

C

}
=

(
P

{
ω0 � ε1+α

C

})�Λα(εs )

;

here 1 > α > 0; Λα(ζ ) = {γ ∈ Z
d; ∀1 � j � d; |γj | � ζ−( 1

2 +α)} and s < 1 resp. s = 1 if n is non-degenerate resp.
degenerate.

In the long range case, we deal with Pε,α,1 = P({ω; |β| � ε−(1+α)/2; ∑
γ∈Zd ωγ (1 + |β − γ |)−ν � ε1+α}). First

we notice that Pε,α,1 � P2 · P1, where

P1 = P
{
ω; ∀γ such that |γ | � ε−(1−α)/2, ωγ � ε1+α

}
,

and

P2 = P
{
ω; ∀γ such that ε−(1−α)/2 < |γ | � ε−(1+2α)/(ν−d),ωγ � ε1+α

(
1 + dist(γ,C0,ε−(1−α)/2)

)(ν−d)(1−α)}
.

For α and ε small enough we get that

log Pε,α,1 � −ε−(κ+d/2)(1+α) − ε−κ(1+α)
∑

ε−(1−α)/2�|γ |�ε−(1+2α)/(ν−d)

(
1 + dist(γ,C0,ε−(1−α)/2)

)−κ(ν−d)(1−α)
. (9)

Since, if (ν − d)κ > d the last sum converges when α is chosen small enough such that (1 − α)(ν − d)κ > d , we get,

lim inf
ε→0+

log | log(Pε,α,1)|
log ε

� −(1 + α)

(
κ + d

2

)
. (10)

In the case when (ν − d)κ < d , for ε being small, one computes the sum in (9) and gets the following estimation∑
ε−(1−α)/2�|γ |�ε−(1+2α)/(ν−d)

(
1 + dist(γ,C0,ε−(1−α)/2)

)−κ(ν−d)(1−α) � C · εκ(1−α) · ε−d(1+α)/(ν−d). (11)

2.2. The upper bound

First, we notice that the short range case is given in [9]. See parts III. B and V. A of [9] for the reduction to the
discrete model.

For the long range case, when d
ν−d

> κ + d
2 , we notice that we have no assumption made on the behavior of n, the

IDS of the periodic operator. The proof goes exactly as the one given in [10] for κ = 0.
When d

ν−d
< κ + d

2 , using a similar result to Theorem 3.2 of [9] we get that for an energy E close to E+, N(E) −
N(E+) can be upper bounded by NE0(C · (E −E+)+E+), the IDS of the bounded random operator H 0

ω = Π0HωΠ0.
Here Π0, is the spectral projection for H1 on the band starting at E+. Then we get that H 0

ω is equivalent to a random
Jacobi matrix and having E+ as a spectrum bottom. We recall that in this case one supposes that n is non-degenerate.
It is proven in [7] that this is equivalent to say that the Floquet eigenvalues of H1 reaching the band edge E+ has
only non-degenerate quadratic extrima at that edge. Lemma 5.5 of [9] can be extended to the present case using the
properties of Aω and B .

By this, using the discrete Fourier transformation and following [8,11,13] we get that it suffices to estimate Na ,
the IDS of the following Anderson discrete operator acting on l2(Zd):

(
Ha

ωu
)
(α) = E+ · u(α) +

∑
|α−β|=1

(
u(α) − u(β)

) + (
V a

ωu
)
(α). (12)

Here V a
ω the diagonal infinite matrix with vα(ω) = ∑

β∈Zd ωβ(1 + |α − β|)−ν for the αth diagonal coefficient.

For u ∈ l2(Zd ∩ C0,k), let Hk
1 ,V k

ω and Hk
ω be the following discrete operators

(
Hk

1 u
)
(α) = E+ · u(α) +

∑ (
u(α) − u(β)

)
,

(
V k

ωu
)
(α) = vα(ω)u(α)
|α−β|=1, β∈C0,k
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and

Hk
ω = Hk

0 + V k
ω .

Let Na
k be the IDS of Hk

ω. From [11,13], we know that for a good choice of k, the IDS at energy E is quite well
approximated by the probability to find a state energy less than E. Precisely we have the following relation:

Na(E) � Na
k (E) � C · Pk(E) = P

({
Hk

ω admits at least an eigenvalue less than E
})

.

The estimation of the last probability is based on probabilistic arguments [1] and given in [8].
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