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Elliptic genera of level N on complex π2-finite manifolds
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Abstract

We prove the rigidity of the elliptic genera of level N on complex manifolds with finite second homotopy group admitting circle
actions, and the vanishing of the Hilbert polynomial of its canonical bundle. To cite this article: R. Herrera, C. R. Acad. Sci. Paris,
Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Genres elliptiques du niveau N sur variétés complexes avec le deuxième groupe homotopie fini. On montre la rigidité des
genres elliptiques de niveau N sur les variétés complexes avec deuxième groupe d’homotopie fini et dotées d’actions de S1, et
l’annulation du polynôme de Hilbert de son fibré vectoriel canonique. Pour citer cet article : R. Herrera, C. R. Acad. Sci. Paris,
Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The elliptic genus was introduced by Ochanine [6] and re-interpreted by Witten [8], who conjectured its rigidity
under circle actions on spin manifolds. The rigidity of the elliptic genus was proved by Taubes [7], Bott and Taubes [1],
etc., and was generalized to non-spin manifolds with finite second homotopy group in [3]. Furthermore, Witten and
Hirzebruch proposed independently a complex version of the genus in the form of the elliptic genus of level N > 0
for complex manifolds with c1 ≡ 0 (modN) and conjectured its rigidity [9], which was proved by Hirzebruch [4],
Krichever [5], etc. In this note, we prove the rigidity of the elliptic genus of level N on π2-finite complex manifolds
M for all N > 0 (see Theorem 2.1), which in turn implies the vanishing of the Hilbert polynomial χ(M,Kk) = 0 for
all k, where K denotes the canonical bundle of M (see Corollary 3.1).

The note is organized as follows: in Section 2 we give the definition of the elliptic genus of level N and state the
Rigidity Theorem 2.1, and in Section 3 we sketch its proof.
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2. Rigidity of the elliptic genera of level N

Let M be a d-dimensional compact manifold and T its holomorphic tangent bundle. The elliptic genus of level N

defined by Witten has the following q-development in the standard cusp of Γ1(N) ⊂ SL2(Z), which we shall take as
its definition

ϕ̃N (M) =
∞∑

j=0

χy(M,Rj )q
j ,

where −y = ζ = e2π i/N , and the Rj denote virtual vector bundles with coefficients in Z[ζ ] arising from the following
infinite product

R(q,T ) =
∞∑

j=0

Rjq
j =

∞⊗
j=1

∧
yqj

T ∗ ⊗
∞⊗

j=1

∧
y−1qj

T ∗ ⊗
∞⊗

j=1

Sqj (T + T ∗),

where

∧
t
(W) =

rk(W)∑
j=0

∧j
W · tj and St (W) =

∞∑
j=0

SjW · tj

denote the sums of exterior and symmetric powers of a vector bundle W , respectively. The first two terms are

R0 = 1, R1 = (1 − ζ )T ∗ + (
1 − ζ−1)T .

Thus we can see that this q-development has integral coefficients. The first term of ϕ̃(M) is χy(M).
The q-developments at other cusps, however, have coefficients which are not necessarily integral. Such coefficients

are of the form χ(M,Kk/N ⊗ Wn) for some virtual vector bundle Wn, and the non-integrality may happen due to K

not necessarily admitting an N -th root. For instance, the first term of the expansion at a cusp of the form 2πikτ/N

for 1 � k � N is

1

q̃k(N−k)d/2N
χ

(
M,Kk/N

)
, (1)

where q̃ is a uniformizing parameter for this cusp (q̃N = q).
If we assume that M admits a holomorphic S1-action, there is an induced action on the bundles Rj and on the

cohomology groups Hr(M,
∧p

T ∗ ⊗ Rj ). Thus, the traces of such action on the cohomology groups produce the
S1-character χ(M,

∧p
T ∗ ⊗ Rj ,λ), where λ ∈ S1, so that

χy(M,Rj ,λ) =
d∑

p=0

χ
(
M,

∧p
T ∗ ⊗ Rj ,λ

)
yp, ϕ̃(M,λ) =

∞∑
j=0

χy(M,Rj ,λ
)
qj .

The rigidity of the elliptic genus for the S1-action means that the finite Laurent series χ(M,Rj ,λ) does not depend
on λ and, therefore, ϕ̃(M,λ) is constant in that variable. Thus, we can now state the rigidity theorem:

Theorem 2.1. Let M be a compact complex manifold with finite second homotopy group, and admitting a non-trivial
holomorphic S1-action. Then, the equivariant elliptic genus ϕ̃N (M,λ) does not depend on λ ∈ S1, i.e.

ϕ̃N (M,λ) = ϕ̃N (M).

3. Sketch of proof

Hirzebruch’s proof of the rigidity theorem [4] for the elliptic genus of level N considers a normalized version,
applies the Atiyah–Bott–Singer fixed point theorem (holomorphic Lefschetz theorem) and examines the behaviour of
the resulting meromorphic expressions. The normalized elliptic genus is

ϕ(M,λ) = ϕ̃(M,λ)

Υ (−α)d
=

∞∑
χy(M,Sj , λ)qj ,
j=0
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where Sj are virtual vector bundles with coefficients in Q(ζ ),

Υ (x) = (
1 − e−x

) ∞∏
j=1

(1 − qj e−x)(1 − qj ex)

1 − qj
,

α = 2π i/N . By applying the Atiyah–Singer–Bott fixed point theorem

ϕ(M,λ) =
∑
ν

ϕN(M,λ)ν,

where ν is an index for the connected components MS1

ν of MS1
,

ϕN(M,λ)ν = 〈
e0 · F(x1 + 2π im1z) · · ·F(xd + 2π imdz),

[
MS1

ν

]〉
e0 is the Euler class of MS1

ν , F(x) = Υ (x − α)/(Υ (x)Υ (−α)), the mi are the exponents of the infinitesimal action of
S1 on T |

MS1 = Lm1 ⊕ · · · ⊕ Lmd , and xi is the formal root of each one of the lines into which T splits.
If the first Chern class of M is divisible by N then

(i) ϕN(M,λ) is elliptic with respect to a certain lattice;
(ii) ϕN(M,λ) has no poles, which implies it is holomorphic and, therefore, constant in λ.

For (i), what is really needed is the S1-action to be N -balanced. A circle action is called N -balanced if the residue
class of the sum

m1 + · · · + md (modN)

does not depend on the connected component MS1

ν . The common residue is called the type t of the S1-action.

Theorem 3.1. [4, p. 179] For an N -balanced S1-action of type t on the complex manifold M , the equivariant elliptic
genus ϕN(M · λ), with λ = e2π iz, is an elliptic function for the lattice Z · Nτ + Z which satisfies

ϕN(M,λq) = ζ tϕN(M,λ), (ζ = e2π i/N ).

For (ii), we have to consider the sums

ψ(λ) =
∑

MS1
ν ⊂X

ϕN(M,λ)ν

for those MS1

ν contained in a given connected component X of the fixed point set MZm , Zm ⊂ S1, for every m ∈ Z.
Hirzebruch determined that ψ(λqs/m), for any integer s, has no poles on the unit circle as long as the residues

d∑
i=1

[
mi

m

]
(modmN)

are all equal. In this way, ϕN(M,λ) has no poles at all and the rigidity theorem follows if c1(M) ≡ 0 (modN)

ϕN(M,λ) = ϕN(M).

However, conditions (i) and (ii) on the S1-action are also fulfilled by actions on complex manifolds with finite
second homotopy group. Consider the S1-decompositions of the tangent space at two distinct S1-fixed points p and p′
in terms of generator L ∼= C of the representation ring R(S1)

TpM = Lm1 ⊕ · · · ⊕ Lmd , Tp′M = Lm′
1 ⊕ · · · ⊕ Lm′

d ,

where mi and m′
i are the exponents of the S1 action at p and p′, respectively. By [2], the virtual representation Tp −Tp′

can be factored as follows

Tp − Tp′ = (1 − L)2 ⊗
(⊕

bjL
j

)
,

j
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where the set {bj ∈ Z} is finite. Thus

d∑
i=1

mi −
d∑

i=1

m′
i =

∑
j

bj · j − 2
∑
j

bj · (j + 1) +
∑
j

bj · (j + 2) = 0.

Hence, conditions (i) and (ii) hold, and the Rigidity Theorem follows.

As a consequence, we see that

ϕN(M) = ϕN(M,λq) = ζ tϕN(M,λ) = ζ tϕN(M),

so that, if the S1-action has type t �= 0 then

ϕN(M) ≡ 0 and ϕ̃N (M) ≡ 0.

On the other hand, the Rigidity Theorem readily implies that the not necessarily integral characteristic numbers

χ(M,Kk/N) = 0

for k = 1, . . . ,N − 1, as in [4]. Since we have imposed no divisibility condition on the first Chern class of M , these
vanishings hold for any N . Thus, the Hilbert polynomial χ(M,Kk) has infinitely many zeroes and is, therefore,
identically zero.

Corollary 3.1. Let M be a compact complex manifold with finite second homotopy group, and admitting a non-trivial
holomorphic S1-action. Then

χ(M,Kk) = 0 for all k.

In particular, the Todd genus vanishes, Todd(M) = 0. �
Hence, the Todd genus is an obstruction to the existence of holomorphic circle actions on π2-finite compact com-

plex manifolds.
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