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Abstract

We first define enumerative invariants of the cotangent bundles of the two-sphere and real projective plane. These invariants
are obtained in the framework of symplectic field theory by counting with respect to some sign holomorphic disks with punctures
sitting on the zero section. Then, we relate these invariants with the ones of closed real symplectic four-manifolds which have been
constructed earlier. This relation provides some congruences and recursive formulas for the latter as well as sharpness results for
the associated lower bounds in real enumerative geometry. To cite this article: J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. I 344
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Comptage invariant de disques holomorphes dans les fibrés cotangents de la sphère de dimension deux et du plan projectif
réel. Dans une première partie, nous introduisons des invariants énumératifs des fibrés cotangents de la sphère de dimension deux
et du plan projectif réel. Ces invariants sont obtenus dans le langage de la théorie symplectique des champs en comptant en fonction
d’un signe les disques holomorphes avec pointes qui reposent sur la section nulle. Puis nous relions ces invariants avec ceux des
variétés symplectiques réelles de dimension quatre précédemment construits et déduisons des congruences et formules récurrentes
pour ces derniers, ainsi que des résultats d’optimalité pour les bornes inférieures associées en géométrie énumérative réelle. Pour
citer cet article : J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Enumerative invariants of cotangent bundles

Let L be a two-dimensional sphere or a real projective plane. Let λ be the Liouville form on T ∗L and cL be
the involution (q,p) ∈ T ∗L �→ (q,−p) ∈ T ∗L. The latter satisfies c∗

Lλ = −λ so that dλ is a symplectic form on
T ∗L for which cL is anti-symplectic. Let g be a Riemannian metric with constant curvature on L, U∗L be the set
of (q,p) ∈ T ∗L for which g(p,p) � 1 and S∗L be the boundary of U∗L. The restriction of λ to S∗L is a contact
form and we denote by Rλ the associated Reeb vector field. The flow generated by Rλ is nothing but the geodesic
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flow so that all orbits are periodic with the same minimal period. Following the framework of symplectic field theory,
we denote by Jλ the space of almost complex structures which are tamed by dλ and asymptotically cylindrical.
More precisely, let us fix once and for all an identification of the complement of the zero section L of T ∗L with the
symplectisation (R × S∗L,d(eρλ)) of (S∗L,λ). We then denote by Jλ the space of almost complex structures J of
class Cl of T ∗L, l � 1, which are tamed by dλ, satisfy J ( ∂

∂ρ
) = Rλ for ρ � 1, where ρ denotes the R-coordinate

in the symplectisation R × S∗L, and are invariant under translation by ρ after some given rank ρ0. We denote by
RJλ ⊂ Jλ the subspace of almost complex structures for which cL is J -antiholomorphic. Note that Jλ and RJλ are
both separable Banach manifolds which are non-empty and contractible.

Now, for a generic J ∈ RJλ we are going to count J -holomorphic disks with some given number of punctures that
are properly immersed in T ∗L such that the boundaries of the disks are mapped to the zero section. Remember that
from Theorem 1.2 of [4] and [1], such a disk converges asymptotically near each of its punctures to some orbit of the
Reeb flow travelled around some number of times. We call this number of times the multiplicity of the asymptotic
orbit. In order to get only finitely many such disks, these disks will be subject to some constraints. Either some of the
asymptotic orbits will be prescribed, or these disks will have to pass through some points of L or of T ∗L \ L. Let ei ,
i � 1, be the sequence of integers which do not vanish only at the ith rank where it equals one. Let α = ∑

i∈N∗ αiei and
β = ∑

i∈N∗ βiei be two sequences of non-negative integers which vanish after some given rank. These two sequences
encode the number of prescribed and non-prescribed asymptotic orbits respectively together with their multiplicities
i ∈ N

∗. The number of punctures is thus δ = ∑
i∈N∗(αi + βi) and we choose a set Γ of

∑
i∈N∗ αi disjoint closed

geodesics of L to prescribe the asymptotic orbits. Now to fix the point constraints, let r ∈ N and x1, . . . , xr be r

distinct points of L. Likewise, let rL ∈ N and ξ1, ξ̄1, . . . , ξrL, ξ̄rL be rL pairs of distinct points of T ∗L \ L such that
cL(ξi) = ξ̄i . We assume that

r + 2rL + 2#Γ = 2δ + ε
∑

i∈N∗
i(αi + βi) − 1, (1)

where ε = 2 if L is homeomorphic to a sphere, and ε = 1 if L is homeomorphic to a real projective plane. Then, for
any generic almost complex structure J ∈ RJλ, there are only finitely many disks with δ punctures that are properly
mapped to T ∗L in such a way that the boundary of the disk is mapped to the zero section L, it passes through x and
intersects each pair {ξi, ξ̄i}, and for j ∈ N

∗, the disk is asymptotic to αj periodic orbits of the Reeb flow lifting some
geodesic of the set Γ and βj other non-prescribed periodic orbits, each of these orbits being of multiplicity j . Denote
by D(α,β,Γ, x, ξ, J ) this finite set of disks. It follows from the generic choice of J that all these disks are immersed.
For such a disk D ∈ D(α,β,Γ, x, ξ, J ), denote by m(D) the finite number of transversal intersection points of the
interior of the disk D with the zero section L and call this number the mass of the disk. Next, set

F(r,rL)(α,β,Γ, x, ξ, J ) = 1

2

∑

D∈D(α,β,Γ,x,ξ,J )

(−1)m(D) ∈ Z.

Note that the disks of D(α,β,Γ, x, ξ, J ) come in pairs exchanged by the involution cL, that is why the coefficient 1
2

does not prevent F(r,rL)(α,β,Γ, x, ξ, J ) from being an integer.

Theorem 1.1. Let α,β be two sequences of non-negative integers which vanish after some given rank. Choose as
above a set Γ of prescribed asymptotic orbits and sets x and ξ of r and rL point constraints in L and T ∗L \ L

respectively, where this number of constraints satisfies (1). Then, the number F(r,rL)(α,β,Γ, x, ξ, J ) of holomorphic
disks with δ = ∑

i∈N∗(αi + βi) punctures satisfying these constraints and counted with respect to their mass neither
depends on the choice of constraints Γ,x, ξ , nor on the generic choice of the almost complex structure J ∈ RJλ.

The proof of Theorem 1.1 goes basically along the same lines as the proof of Theorem 2.1 of [10]. This Theorem 1.1
provides enumerative invariants of the cotangent bundles of the two-sphere and the real projective plane which will be
denoted by F(r,rL)(α,β), and when rL vanishes by F(α,β). By using similar methods as the ones used in §3.4 of [10],
one can obtain the following values:

Lemma 1.2. If L is homeomorphic to a sphere and rL = 0, then F(e1,0) = F(0, e1) = 1, F(e2,0) = 2, F(0, e2) = 8,
F(2e1,0) = 2, F(e1, e1) = 4 and F(0,2e1) = 6.
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Lemma 1.3. If L is homeomorphic to a real projective plane and rL = 0, then F(e1,0) = F(0, e1) = F(e2,0) =
F(2e1,0) = F(e1, e1) = F(0,2e1) = 1 and F(0, e2) = 4.

Lemma 1.4. If L is homeomorphic to a real projective plane and rL = 0, then F(e3,0) = 2, F(0, e3) = 12, F(e1 +
e2,0) = 2, F(e1, e2) = 8, F(e2, e1) = 4, F(0, e1 + e2) = 24, F(3e1,0) = 2, F(2e1, e1) = 4, F(e1,2e1) = 6 and
F(0,3e1) = 8.

Remark 1. Further constructions of such invariants are in process.

2. Relation with invariants of closed real symplectic four-manifolds

Let (X,ω, cX) be a closed real symplectic four-manifold. In [10], we have constructed enumerative invariants
which when the real locus RX = fix(cX) is connected, take the form of a function χ :d ∈ H2(X;Z) �→ χd(T ) =∑c1(X)d−1

r=0 χd
r (T )T r ∈ Z[T ]. When the real locus RX contains a sphere or a real projective plane, it is possible to

relate these invariants with the invariants F(α,β) defined in Theorem 1.1 by using the splitting principle of symplectic
field theory, see [2]. We present here a few applications of this point of view and then briefly discuss how to obtain
them.

Proposition 2.1. If (X,ω, cX) is the ellipsoid quadric, d ∈ H2(X;Z) is such that c1(X)d � 1, and r, rX ∈ N such
that r + 2rX = c1(X)d − 1, then, two to the power max(0, rX − 1

2 (r + 1)) divides χd
r . If (X,ω, cX) is the complex

projective plane, d > 0 and r, rX ∈ N is such that r + 2rX = 3d − 1, then, two to the power max(0, rX − r − 1)

divides χd
r .

Proposition 2.2. Let (X,ω, cX) be the projective plane or the ellipsoid quadric, d ∈ H2(X;Z) be a positive multiple

of the hyperplane section for the standard embedding and 0 � r � 1. Then (−1)
1
2 (d2−c1(X)d+2)χd

r � 0. Moreover, the
lower bounds given by Corollary 2.2 of [10] are sharp in these cases, namely realized by any generic almost complex
structure J ∈ RJλ having a sufficiently long neck near the real part. Finally, the invariant vanishes only when the
positive multiple of the hyperplane section is two in the case of the ellipsoid and three and four in the case of the
projective plane.

Remark 2. From Proposition 2.2 we get in particular that in the case of the complex projective plane, the invariants χd
0

for d = 3 mod (4), d �= 3, and χd
1 for d = 0 mod (4), d �= 4, are negative. This disproves Conjecture 6 of [5] on non-

negativity of these invariants.

In order to prove Propositions 2.1 and 2.2, we stretch the neck of a generic almost complex structure of (X,ω, cX)

near the real part until the manifold splits in two pieces T ∗L and X \ L, where L = RX. The real rational curves
which are counted by χd

r then split into rational curves with punctures and finite Hofer energy in these two pieces.
The main parts of these curves in T ∗L consist of real rational curves which pass through the points x1, . . . , xr , these
parts are precisely counted by the invariant F(α,β), where α,β can take finitely many values but r is fixed, given
by χd

r . The parts in X \ L are relative invariants arising in symplectic field theory which have nothing to do with the
real structure cL. However, these parts come in pairs exchanged by cL and have to pass through pairs of complex
conjugated points. The power of two arising in Proposition 2.1 basically comes from the number of ways to divide
these pairs into two disjoint sets exchanged by cL. Sharpness of the lower bounds given by Proposition 2.2 comes from
the fact that in these cases, all the split curves have the same sign which means that for an almost complex structure
with a very long neck, close to the splitting, all the real rational curves counted by χd

r have masses of the same
parity. Hence, this number of curves precisely equals χd

r . Note that in the case of the complex projective plane or the
ellipsoid, X \ L is just a complex line bundle of degree four or two respectively over CP 1 – for the standard complex
structure. The rational holomorphic curves of finite Hofer energy of X \ L thus compactify into irreducible curves of
the rational ruled surface of degree four or two respectively, having tangency conditions with the exceptional divisor
predicted by the sequences α,β . Recursive formulas for such relative invariants have been obtained, see Theorem
6.8 of [9]. In particular for these surfaces, as soon as the invariants F(α,β) are computed for a given r , this process
provides a recursive formula to compute all the invariants χd

r for this r . From Lemmas 1.2, 1.3 and 1.4, we thus
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deduce recursive formulas computing the invariants χd
r for r � 2 in the projective plane and r � 3 in the ellipsoid.

Unfortunately, space is too short here to provide the explicit formulas (they will be given in a forthcoming paper). Let
us provide instead the first values computed by hand from these formulas:

Proposition 2.3.

(1) Let (X,ω, cX) be the ellipsoid and f1, f2 be the homology classes of its two rulings. Then, χf1+f2(T ) =
T + T 3, χ2(f1+f2)(T ) = 2T 3 + 4T 5 + 6T 7, χ3(f1+f2)(T ) = 16T + 16T 3 + o(T 4), χ4(f1+f2)(T ) = −128T +
384T 3 + o(T 4) and χ5(f1+f2)(T ) = 24576T + o(T 2).

(2) Let (X,ω, cX) be the projective plane, then, χ4(T ) = o(T 2), χ5(T ) = 64 + 64T 2 + o(T 3), χ6(T ) = 1024T +
1536T 3 + o(T 4), χ7(T ) = −14336 + 11776T 2 + o(T 3) and χ8(T ) = −280576T + o(T 2).

Remark 3. The values χ4
1 = 0, χ5

0 = χ5
2 = 64 have already been computed in [5] thanks to a computer and the

algorithm [8]. Recall that the latter extends the one given in [7] to compute the leading coefficient of χd(T ). Note
also that I. Itenberg, V. Kharlamov and E. Shustin [6] have recently produced a real version of [3] to get a recursive
formula satisfied by the invariants χd

3d−1 of real toric Del Pezzo surfaces.
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