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Abstract

In this Note we give an algebraic construction of a class of p-adic exponentials of Artin–Hasse type which are convergent
in the disk D−(0,1). Moreover we have a control for the field of coefficients of power series that defines such functions. Such
objects were used by Christol and Robba to calculate the irregularity of a rank 1 p-adic differential operator, under the restriction
of spherical completeness for the field of coefficients, and recently by Pulita, in order to classify the same equations. To cite this
article: D. Chinellato, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Propriétés algébriques d’une classe d’exponentielles. Dans cette Note nous donnons une construction algébrique d’une classe
d’exponentielles p-adiques du type d’Artin–Hasse qui sont convergentes dans le disque D−(0,1). Nous avons d’ailleurs un contrôle
des coefficients de la série entière qui définit de telles fonctions. De tels objets ont été employés par Christol et Robba pour calculer
l’irrégularité d’un opérateur différentiel p-adique d’ordre 1, sous la restriction que le champ des coefficients soit sphériquement
complet, et récemment par Pulita, afin de classifier les mêmes équations. Pour citer cet article : D. Chinellato, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

In this Note we find a family of p-adic exponentials of Artin–Hasse type which are convergent in the disk D−(0,1).
More precisely our main result is the following:

Theorem 0.1 (Main theorem). Let T be a complete unramified extension of Qp with perfect residue field of char p > 0,
and let P(t) ∈ OT [t] be an Eisenstein polynomial of degree e � p − 1. Then there exists a sequence (α0, α1, . . .) ∈
(OT )N such that the following assertions hold for all natural numbers n � 0:

(i) The exponential

En(x) := exp

(
α0

pn
xpn + α1

pn−1
xpn−1 + · · · + αnx

)
(1)
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belongs to 1 + xOKn�x�, where Kn := T (α0, . . . , αn).
(ii) α0 is a root of P(t), and inductively αn verifies Qσ−n

(αn) = αn−1, where Q := tp−e · P(t), σ is the Frobenius
of T , and Qσ (t) is the polynomial obtained by applying σ to the coefficients of Q(t).

(iii) The extension Kn/T is totally ramified for all n � 0.
(iv) αn has p-adic valuation vp(αn) = 1/epn. Hence [Kn : Kn−1] = p, for all n � 1, while [K0 : T ] = e.

The interest of this theorem is that such p-adic exponentials are solutions of rank one solvable differential equations
and led P. Robba to obtain an explicit computation of the index of the associated differential operators (cf. [10, §10],
[3, §13]). The existence of the αi ’s was first proved by Robba in [10, Lemme 10.8] and [3, Théorème 13.2.1], but his
method was highly non-explicit and required working in a spherically complete and algebraically closed field.

This problem was pointed out us by B. Dwork [5], and we obtained our result in 1994 under his direction. This Note
was not published before, because, in 1994, this statement had already been proved by S. Matsuda (cf. [8, Lemma 1.5])
in the particular case in which T = Qp , Q(t) = (1 + t)p − 1, and p > 2. Note that for P(t) = tp−1 − p, α0 is the π

used by Dwork in the construction of his θ(t) (cf. [6, Ch II §6], [4, Introduction]). Until recently it seemed to us that
the existence of a new and more general proof was not really interesting. But recently A. Pulita in [9] has actually
shown how these exponentials, and in particular the proof we give, is crucial in the classification of rank one p-adic
differential equations.

1. Notations

If K is a p-adic field we denote by vp the valuation normalized by vp(p) = 1, by OK the ring of integers and by
K an algebraic closure of K . If A is a ring we denote by W(A) the ring of Witt vectors on A relative to the prime p

(cf. [2]). Let A be a ring, the phantom map is the ring homomorphism w : W(A) → AN defined by a = (a0, a1, . . .) �→
w(a) = (w0(a),w1(a), . . .), where wk is defined by wk(a) := ∑k

i=0 pi · apk−i

i .

Remark 1. If the multiplication by p is injective (resp. bijective), then the phantom map is injective (resp. bijective)
(cf. [2, Lemme 3, §1, no 2]).

2. Proof of the main theorem

We split the proof into two parts: first we reduce the existence of the sequence (αn)n∈N to that of a suitable sequence
(an)n∈N of Witt vectors, then we construct the sequence (an)n∈N in (many) effective ways.

2.1. Reduction to a Witt vector problem

The following lemma provides a criterion for the integrality of certain formal series [2, §1 Ex. 58/c]:

Lemma 2.1. Let Z(p) := Zp ∩ Q, and let A be a Z(p)-algebra of characteristic zero. Let Q(A) := A[1/p] and let
(w0,w1, . . .) ∈ AN. Let f (x) the formal series defined by

f (x) := exp

( ∞∑
k=0

wk

xpk

pk

)
∈ 1 + xQ(A)�x�. (2)

Then the following are equivalent:

(i) f (x) ∈ 1 + xA�x�;
(ii) There exists a Witt vector a = (a0, a1, . . .) ∈ W(A) such that w(a) = (w0,w1, . . .).

Proof. Assume the existence of a. Let E(x) := exp(
∑∞

k=1
xpk

pk ) be the Artin–Hasse exponential. Then one can easily

check that exp(
∑∞

wk
xpk

k ) = ∏
E(ai · xpi

). Since E(akx
pk

) ∈ 1 + xA�x� for all a ∈ A, we have f (x) ∈ 1 +
k=0 p i�0
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xA�x�. Assume now that f (x) ∈ 1 + xA�x�. By [6, Ch II Lemma 1.5] and [1, Ch IV §4.10], there exists a unique
sequence b = (bn)n∈N ∈ AN such that

f (x) =
∞∏

k=1

(
1 − bkx

k
)−1 = exp◦ log

( ∞∏
k=1

(
1 − bkx

k
)−1

)
= exp

(
−

∞∑
k=1

log
(
1 − bkx

k
)−1

)

= exp

( ∞∑
r,k=1

br
k

r
xr·k

)
= exp

( ∞∑
n=1

(
Φn(b)

n

)
xn

)
where Φn(b) =

∑
r|n

1�r�n

r · bn/r
r . (3)

By comparing the last exponential in (3) with f (x) we get Φn(b) = wk if n = pk and 0 otherwise. Let ak = bpk ∈ A

for all k. Then the Witt vector a := (an)n∈N satisfies the requirements of Lemma 2.1. �
Definition 2.2. For all sequences w = (w0,w1, . . .) ∈ AN, we set wn = (wn,wn−1, . . . ,w1,w0,0,0, . . .).

Remark 2. By Lemma 2.1 the assertion (i) of the main Theorem 0.1 is equivalent to the following assertion:
There exists a sequence α = (α0, α1, . . .) ∈ ON

T
and a family of Witt vectors an ∈ W(OT ), n � 0, such that, for all

n � 0, one has

w(an) = αn. (4)

In other words, for all n � 0, the phantom vector of an is (αn,αn−1, . . . , α0,0,0, . . .).
The proof of Theorem 0.1 is therefore reduced to defining a (not unique) sequence αn ∈ OT such that Eqs. (4) with

data αn and unknown an ∈ W(OT ) are satisfied.

2.2. Second part of the proof: definition of the sequence (α0, α1, . . .) ∈ AN

We denote by σ both the Frobenius homomorphism σ :x �→ xp on the residue field of T and its unique lifting to
T defined by aσ ≡ ap mod pOT . We also denote by σ the extension to OT [t] given by the following:

∑
ait

i �→∑
aσ
i t i :OT [t]y →OT [t]. Let P(t) ∈ OT [t] be an Eisenstein polynomial of degree e � p − 1, we set

Q(t) := tp−e · P(t). (5)

Definition 2.3 (Definition of the sequence αn ∈ AN). Let αn be inductively defined as follows:

(i) α0 is an arbitrary root of P(t), then vp(α0) = 1/e and put K0 = T (α0);
(ii) Suppose (αi)i�n−1 and (Ki)0�i�n−1 have already been defined so that Ki := Ki−1(αi) and vp(αi) = 1/epi , for

all i � n − 1. Let Pn(t) be the following Eisenstein polynomial of degree p:

Pn(t) := Qσ−n

(t) − αn−1, n � 1. (6)

We define αn as an arbitrary root of Pn(t) ∈ OKn−1[t], then vp(αn) = 1/epn and put Kn := Kn−1(αn).

2.2.1. Construction of the sequence an

The construction is based on the following lemma, which provides the existence of certain Witt vectors with
prescribed phantom vector:

Lemma 2.4. ([7, Ch 7 Prop 4.12], [2, §1 Ex. 14]) Let A be a p-torsion-free ring and let Φ : A → A be a lifting of the
Frobenius endomorphism on A/pA, namely Φ(x) ≡ xp mod pA. Let Φ0 := IdA and Φn = Φ ◦ Φn−1. Then there
exists a unique ring morphism sΦ :A → W(A) satisfying

F ◦ sΦ = sΦ ◦ Φ, (7)

where F : W(A) → W(A) is the canonical Frobenius homomorphism. Moreover sΦ is injective, and for all n ∈ N,
and all x ∈ A one has

wn

(
sΦ(x)

) = Φn(x). (8)
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Now we apply Lemma 2.4 with A = OT [t] to solve Eqs. (4) in W(OT [t]). Then we specialize the indeterminate t

to the values αn to obtain a sequence of Witt vectors satisfying the relations (4). To do this, for all n � 0, we call Φn

the Frobenius on OT [t] sending g(t) �→ gσ (Qσ−n
(t)):

Φn :OT [t] →OT [t]. (9)

Lemma 2.5. For all n ∈ N the pair (OT [t],Φn) satisfies the assumptions of Lemma 2.4.

Now fix g(t) = t . For each n ∈ N, let sn(t) := sΦn(t) = (sn,0(t), sn,1(t), . . .) ∈ W(OT [t]) be the unique Witt vector
satisfying wk(sn(t)) = Φk

n(t). In other words sn(t) is the unique Witt vector having(
t,Φn(t),Φ

2
n(t), . . .

) ∈ AN (10)

as phantom vector. The existence and uniqueness of sn(t) is guaranteed by Lemma 2.4.
Now specialize the variable t to αn, and put

an := sn(αn) ∈ W(OKn), (11)

in order that the phantom components of an be (αn,Φn(t)|t=αn,Φ
2
n(t)|t=αn, . . . ,Φ

n
n(t)|t=αn,0,0, . . .). Hence, by

Definition 2.3, one has Qσ−n
(αn) = αn−1, Qσ−n+1

(αn−1) = αn−2, . . . ,Q(α0) = 0 and so:

Φk
n(t)|t=αn = (

Qσ−n+k−1 ◦ · · · ◦ Qσ−n+2 ◦ Qσ−n+1 ◦ Qσ−n)
(αn) =

{
αn−k if k � n,
0 if k > n.

(12)

Then we can conclude that the sequence an satisfies w(an) = αn (cf. Definition 2.2) with the property required by
Theorem 0.1. This completes the proof of the main theorem.
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