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Abstract

We consider the linear Schrödinger equation on a one-dimensional torus and its time-discretization by splitting methods. As-
suming a non-resonance condition on the stepsize and a small analytical size of the potential, we show the conservation over
exponentially long time of the energies associated with the double eigenvalues of the Laplace operator for asymptotically large
modes. The result relies on a normal form theorem whose proof uses standard techniques of classical perturbations theory, ex-
tended here to an infinite dimensional context. To cite this article: G. Dujardin, E. Faou, C. R. Acad. Sci. Paris, Ser. I 344
(2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Comportement en temps long des méthodes de splitting appliquées à l’équation de Schrödinger linéaire. Nous considérons
la semi-discrétisation en temps de l’équation de Schrödinger linéaire sur un tore de dimension un par une méthode de splitting.
Sous une condition de non-résonance sur le pas de temps et sous l’hypothèse que le potentiel est petit et analytique, nous montrons
la conservation des énergies associées aux valeurs propres doubles du Laplacien sur des temps exponentiellement longs et pour des
modes asymptotiquement grands. Le résultat repose sur un théorème de forme normale dont la preuve utilise la théorie classique
des perturbations, appliquée ici à un problème de dimension infinie. Pour citer cet article : G. Dujardin, E. Faou, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the linear Schrödinger equation

i
∂ϕ

∂t
(x, t) = −∂2ϕ

∂x2
(x, t) + V (x)ϕ(x, t), with ϕ(x,0) = ϕ0(x), (1)
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where ϕ(x, t) is a complex function depending on the space variable x ∈ T := R/2πZ and the time t � 0. The
potential V (x) is a real function and the function ϕ0 is the initial value at t = 0. For a given time step h > 0, we
consider the approximation scheme

ϕ(h) � exp(ih�) exp(−ihV )ϕ(0) (2)

where by definition, exp(ih�)ϕ and exp(−ihV )ϕ are the solutions at the time t = h of the equations

i
∂ψ(t)

∂t
= −�ψ(t), with ψ(0) = ϕ, and i

∂ψ(t)

∂t
= V ψ(t), with ψ(0) = ϕ

respectively. If the potential is smooth enough, it can be shown that the approximation (2) is a first order approximation
of the solution of (1), see [4] and [1] (where the non-linear case is studied). Note moreover that the scheme (2)
conserves the L2 norm. As the problem (1) is set on an infinite dimensional space of functions, the long time behavior
of this method cannot be analyzed using classical backward error analysis (see for instance [3,5]) and the Baker–
Campbell–Hausdorff formula.

To study the long time behavior of the numerical scheme (2), we consider the family of Hamiltonians

H(λ) = −� + λV, λ ∈ R, (3)

with λ sufficiently small and with an analytic potential V . We denote by

L(λ) = exp(ih�) exp(−ihλV ), λ ∈ R, (4)

the corresponding family of propagators. The Hamiltonian H(λ) is thus viewed as an analytic perturbation of the
Hamiltonian H(0) = −� which is completely integrable in the sense where the dynamics can be reduced to an
(infinite) collection of periodic systems in terms of Fourier coefficients of the solution.

We use the following non-resonance condition on the stepsize: There exist γ > 0 and ν > 1 such that

∀k ∈ Z, k �= 0,

∣∣∣∣1 − eihk

h

∣∣∣∣ � γ |k|−ν. (5)

It can be shown that the set of stepsizes h ∈ (0, h0) that do not satisfy (5) has a Lebesgue measure O(hr+1
0 ) for r > 1

when h0 > 0 is close to 0 (see [3,6]).

2. Statement of the results

In all this Note, we identify a function ψ(x) and its Fourier transform on T. This means that we write ψn the
nth Fourier coefficient of ψ for all n ∈ Z, and identify the collection (ψn)n∈Z with the function ψ itself. We identify
operators acting on L2(T) with operators acting on l2(Z). Such an operator S can thus be characterized by its complex
coefficients (Sij )(i,j)∈Z2 . If ψ = (ψn)n∈Z ∈ C

Z, the product ϕ = Sψ is defined by the sequence ϕ = (ϕn)n∈Z of C
Z

with coefficients ϕn := ∑
k∈Z

Snkψk , provided the summation makes sense. For two operators A and B , the product
AB is the operator whose coefficients are given formally by the relation

∀(i, j) ∈ Z
2, (AB)ij =

∑
k∈Z

AikBkj . (6)

We define the analytic norm for functions

‖ψ‖ρ = sup
k∈Z

(
eρ|k||ψk|

)

for a given positive number ρ. We make the assumption that there exists ρV > 0 such that ‖V ‖ρV
< ∞. In the

following, for a function ϕ we use the notation

|ϕ|20 = |ϕ0|2 and ∀k ∈ Z\{0}, |ϕ|2k = |ϕk|2 + |ϕ−k|2 (7)

to denote the energies associated with the double eigenvalues −k2 of the Laplace operator. Moreover, for s > 0 we
introduce the norm

‖ϕ‖s,∞ = sup
(
(1 + k)s |ϕ|k

)
. (8)
k�0
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We can prove the following result concerning the long time behavior of the numerical solution provided by the
splitting method (2):

Theorem 2.1. For n ∈ N, we set ϕn = L(λ)nϕ0. There exist positive constants C, c, λ0, and σ depending only on V ,
γ and ν such that for all h ∈ (0,1) satisfying the non-resonance condition (5), all λ ∈ (0, λ0), n � exp(cλ−σ /2), and
ϕ0 ∈ L2(T),

∀k ∈ N, k � λ−σ ,
∣∣|ϕn|k − |ϕ0|k

∣∣ � Cλ1/2‖ϕ0‖. (9)

Moreover, the two following propositions hold true:

(i) For all s > 1/2 and all s′ such that s − s′ � 1/2, there exists a constant cs depending only on V , γ , ν and s, such
that for all h ∈ (0,1) satisfying (5), all λ ∈ (0, λ0), n � exp(cλ−σ /2), and ϕ0 with ‖ϕ0‖s,∞ < +∞, we have

sup
0�k�λ−σ

(
(1 + k)s

′ ∣∣|ϕn|k − |ϕ0|k
∣∣) � csλ

1/2‖ϕ0‖s,∞. (10)

(ii) For all ρ ∈ (0, ρV /5), there exist positive constants μ0 and Cρ (depending only on V , γ , ν and ρ) such that for
all h ∈ (0,1) satisfying (5), all λ ∈ (0, λ0), n � exp(cλ−σ /2), μ ∈ (0,μ0) and ϕ0 with ‖ϕ0‖ρ < ∞,

sup
0�k�λ−σ

(
eμk

∣∣|ϕn|k − |ϕ0|k
∣∣) � Cρλ1/2‖ϕ0‖ρ. (11)

The inequality (9) expresses the fact that the oscillatory energies |ϕ|k are conserved over very long time for as-
ymptotically large modes k. The inequalities (10) and (11) give more precise estimates in the case where the initial
condition has more regularity.

3. Sketch of proof

The proof of the theorem relies on a normal form result given in [2]. We explain here the main ideas. For an
operator S and for ρ ∈ R

+, we define the norm

‖S‖ρ = sup
k,�∈Z

(
eρ|k−�||Sk�|

)
(12)

and we set Aρ the space of operators S with finite norm ‖S‖ρ < ∞. We define moreover the X-shaped operators as
the elements X ∈Aρ for which we have Xk� �= 0 	⇒ |k| = |�|. For a given K > 0 we define the set of indices

IK = {
(k, �) ∈ Z | |k| � K or |�| � K

}
. (13)

We then define XK
ρ the set of operators X ∈ Aρ that are almost X-shaped in the sense where

Xk� �= 0 	⇒ (|k| = |�| or (k, �) /∈ IK

)
.

It is worth noticing that under the action of a given almost X-shaped operator, all the spaces {ϕ|ϕj �= 0 	⇒ j = ±k},
|k| � K , are invariant, as well as the space {ϕ|ϕj �= 0 	⇒ |j | > K}.

In [2] we prove the following result: There exist positive constants c, λ0 and σ depending only on V , γ and ν

and families of operators Q(λ), Σ(λ) and R(λ) analytic in λ for |λ| < λ0 such that for λ ∈ (0, λ0) and all h ∈ (0,1)

satisfying (5), we can write

Q(λ)L(λ)Q(λ)∗ = Σ(λ) + R(λ)

with the estimate∥∥R(λ)
∥∥

ρV /5 � exp(−cλ−σ ). (14)

Moreover, the operators Q(λ) and Σ(λ) are unitary for all λ, and satisfy for λ ∈ (0, λ0)∥∥Q(λ) − Id
∥∥ � λ1/2 and

∥∥Σ(λ) − eih�
∥∥ � hλ1/2.
ρV /4 ρV /4
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Eventually, we have

Q(λ) ∈AρV /4 and Σ(λ) ∈ XK
ρV /4 with K = λ−σ

that is, Σ(λ) is a unitary almost X-shaped operator.
Roughly speaking, this result shows that after a unitary change of variables close to the identity in some analytic

operator norm, the dynamics can be reduced up to exponentially small terms to the action of Σ(λ) which decouples
into 2 × 2 symplectic dynamics for each modes ±k. This is valid for asymptotically large modes |k| � λ−σ . More
precisely, if ϕ is a function and if ψ = Σ(λ)ϕ, we have for |k| � λ−σ ,(

ψk

ψ−k

)
=

(
ak(λ) bk(λ)

ck(λ) dk(λ)

)(
ϕk

ϕ−k

)
(15)

where the 2 × 2 matrix in this relation is close to the diagonal matrix with entries e−ihk2
, and is unitary. This implies

that we have for |k| � λ−σ , |ψk|2 + |ψ−k|2 = |ϕk|2 + |ϕ−k|2. Combining this conservation law for the action of Σ(λ)

with the exponential estimate (14) allows us to obtain the long time bounds of Theorem 2.1.
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