

C. R. Acad. Sci. Paris, Ser. I 344 (2007) 27-32

http://france.elsevier.com/direct/CRASS1/

Géométrie algébrique

Opérations sur la *K*-théorie algébrique et régulateurs *via* la théorie homotopique des schémas

Joël Riou

Institut de mathématiques de Jussieu, université Paris 7 – Denis Diderot, 175, rue du Chevaleret, 75013 Paris, France Reçu le 13 octobre 2006 ; accepté le 8 novembre 2006

> Disponible sur Internet le 8 décembre 2006 Présenté par Christophe Soulé

Résumé

Dans cette Note, on utilise la théorie homotopique des schémas au-dessus des schémas réguliers pour réduire la construction des opérations sur la *K*-théorie algébrique et des régulateurs aux cas classiques : groupes K_0 et groupes de Chow. *Pour citer cet article : J. Riou, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2006 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abstract

Operations on algebraic K-theory and regulators via the A^1 -homotopy theory. In this note, we use the A^1 -homotopy theory over regular schemes to reduce the construction of operations on algebraic K-theory and regulators to the classical case: K_0 -groups and Chow groups. *To cite this article: J. Riou, C. R. Acad. Sci. Paris, Ser. I 344 (2007).*

© 2006 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abridged English version

Let S be a (Noetherian separated) regular scheme. We let Sm/S be the category of separated smooth S-schemes of finite type. F. Morel and V. Voevodsky defined the A^1 -homotopy category $\mathcal{H}(S)$ in [10] and proved that for any $X \in Sm/S$ and $n \in \mathbb{N}$, there exists a natural bijection

$$\operatorname{Hom}_{\mathcal{H}_{\bullet}(S)}(S^n \wedge X_+, \mathbf{Z} \times \mathbf{Gr}) \simeq K_n(X),$$

where **Gr** is the infinite Grassmannian and $K_n(X)$ the *n*th higher algebraic *K*-group defined by D. Quillen in [11]. In the following theorem, we consider $K_0(-)$ as a presheaf of sets on Sm/S:

Theorem 0.1. *Let S be a regular scheme. There are canonical bijections:*

$$\operatorname{End}_{\mathcal{H}(S)}(\mathbf{Z}\times\mathbf{Gr})\xrightarrow{\sim}\operatorname{End}_{\operatorname{Sm}/S^{\operatorname{opp}}\mathbf{Sets}}\big(K_0(-)\big)\xrightarrow{\sim}\prod_{n\in\mathbf{Z}}\lim_{(d,r)\in\mathbf{N}^2}K_0(\mathbf{Gr}_{d,r})\simeq\prod_{n\in\mathbf{Z}}K_0(S)[[c_1,c_2,\ldots]].$$

Adresse e-mail: joel.riou@normalesup.org (J. Riou).

Corollary 0.2. Let S be a regular scheme. Let $\tau: K_0(-) \to K_0(-)$ be a morphism of presheaves of pointed sets on Sm/S. Then, τ naturally induces maps $K_n(X) \to K_n(X)$ for all $X \in \text{Sm/S}$ and $n \in \mathbb{N}$.

Theorem 0.1 generalises to operations with several variables, providing the following corollary:

Corollary 0.3. Let S be a regular scheme. The object $\mathbb{Z} \times \mathbb{Gr}$ is endowed with the structure of a special λ -ring inside the category $\mathcal{H}(S)$.

We prove that these structures on $\mathbb{Z} \times \mathbb{G}\mathbf{r}$ arising from the classical ones on $K_0(-)$ induce the same maps on $K_{\star}(-)$ as the other known constructions (see [6–8,13,15]).

It is possible to pursue this study in the stable homotopy category $\mathcal{SH}(S)$ of \mathbf{P}^1 -spectra (see [4]). The object \mathbf{BGL} representing algebraic K-theory in that category is constructed in [14, §6.2]. The method used above gives tools to compute the endomorphism ring of \mathbf{BGL} in $\mathcal{SH}(S)$. The \mathbf{Q} -localised version of this computation leads to the following theorem:

Theorem 0.4. Let S be a regular scheme. There exists a canonical decomposition in SH(S) of the **Q**-localisation BGL_0 of BGL:

$$\mathbf{BGL}_{\mathbf{Q}} = \bigoplus_{i \in \mathbf{Z}} \mathbf{H}_{\mathbf{B}}^{(i)},$$

where, for any $k \in \mathbb{Z} - \{0\}$, the Adams operation Ψ^k acts on $\mathbf{H}_{\mathrm{B}}^{(i)}$ by multiplication par k^i .

Likewise, if k is a perfect field, we can compute the set of morphisms from $\mathbb{Z} \times \mathbb{Gr}$ to motivic Eilenberg–MacLane spaces (defined in [14, pages 596–597]) in $\mathcal{H}(k)$ and from **BGL** to motivic Eilenberg–MacLane spectra in $\mathcal{SH}(k)$.

0. Introduction

Cette Note est consacrée aux résultats de la thèse de l'auteur [12]. Dans [1], le groupe de Grothendieck des fibrés vectoriels sur un schéma est introduit et est muni de diverses structures, homologues à celles que l'on peut aussi construire en K-théorie topologique. D. Quillen a défini par la suite des groupes de K-théorie algébrique supérieure (cf. [11]), faisant de cette famille de groupes une théorie cohomologique sur les schémas. Utilisant diverses méthodes, plusieurs auteurs ont étendu les structures algébriques sur les groupes K_0 (produits, λ -opérations, opérations d'Adams) sur les groupes de K-théorie algébrique supérieure (voir notamment [6–8,13,15]). On se propose ici de montrer comment la théorie homotopique des schémas (cf. [10] et [14]) fournit un cadre pour étudier les opérations sur la K-théorie algébrique de façon unifiée, pourvu que l'on se limite aux schémas réguliers. Le slogan est que pour définir des opérations $K_n(X) \to K_n(X)$ pour tout schéma régulier X et tout entier naturel n, il suffit de se donner des applications $K_0(X) \to K_0(X)$ fonctorielles en X.

1. Endomorphismes de Z x Gr

Soit S un schéma régulier (on entend par là que S est noethérien, séparé et que ses anneaux locaux sont réguliers). Dans [10], F. Morel et V. Voevodsky ont défini la catégorie homotopique de S, notée $\mathcal{H}(S)$ (ainsi qu'une version pointée $\mathcal{H}_{\bullet}(S)$). On note Sm/S la catégorie des schémas lisses, de type fini et séparés sur S. Le résultat sur lequel s'appuie ce travail est le suivant :

Théorème 1.1. (Morel–Voevodsky, [10, Theorem 3.13, page 140]) Soit S un schéma régulier. Pour tout entier naturel n, il existe une bijection

$$\operatorname{Hom}_{\mathcal{H}_{\bullet}(S)}(S^n \wedge X_+, \mathbf{Z} \times \mathbf{Gr}) \simeq K_n(X)$$

fonctorielle en $X \in \text{Sm}/S$.

L'objet \mathbf{Gr} désigne la grassmannienne infinie, colimite des espaces $\mathbf{Gr}_{d,r}$ pour $(d,r) \in \mathbf{N}^2$, où $\mathbf{Gr}_{d,r} \in \mathrm{Sm}/S$ est la grassmannienne des d-plans dans le fibré vectoriel trivial ε^{d+r} de rang d+r. On note $\mathcal{M}'_{d,r} \subset \varepsilon^{d+r}$ le fibré vectoriel tautologique de rang d sur $\mathbf{Gr}_{d,r}$ et on pose $u_{d,r} = [\mathcal{M}'_{d,r}] - d \in K_0(\mathbf{Gr}_{d,r})$; ces classes forment un système compatible quand les entiers d et r varient.

Le résultat principal est le suivant :

Théorème 1.2. Soit S un schéma régulier. On note $K_0(-)$ le préfaisceau d'ensembles sur Sm/S qui à X associe $K_0(X)$. L'application suivante est bijective :

$$\operatorname{End}_{\mathcal{H}(S)}(\mathbf{Z} \times \mathbf{Gr}) \xrightarrow{\sim} \operatorname{End}_{\operatorname{Sm}/S^{\operatorname{opp}}\mathbf{Ens}}(K_0(-)),$$

où Sm/S^{opp}Ens désigne la catégorie des préfaisceaux d'ensembles sur Sm/S. De plus, ces ensembles d'endomorphismes s'identifient à

$$\prod_{n\in\mathbf{Z}}\lim_{(d,r)\in\mathbf{N}^2}K_0(\mathbf{Gr}_{d,r})\simeq\prod_{n\in\mathbf{Z}}K_0(S)[[c_1,c_2,\ldots]],$$

où c_k correspond à la famille compatible de classes $\gamma^k(u_{d,r}) \in K_0(\mathbf{Gr}_{d,r})$.

La démonstration utilise la suite exacte de Milnor (cf. [3, Chapter VI, Proposition 2.15]), l'astuce de Jouanolou (cf. [5]) et le calcul de la *K*-théorie algébrique des grassmanniennes (cf. [1, exposé VI, §4]).

Corollaire 1.3. Soit S un schéma régulier. Soit $\tau: K_0(-) \to K_0(-)$ un morphisme de préfaisceaux d'ensembles sur Sm/S tel que $\tau(0) = 0 \in K_0(S)$. Alors, τ induit naturellement des applications $K_n(X) \to K_n(X)$ fonctorielles en $X \in Sm/S$ pour tout entier naturel n.

En effet, τ correspond à un unique morphisme $\mathbf{Z} \times \mathbf{Gr} \to \mathbf{Z} \times \mathbf{Gr}$ dans $\mathcal{H}_{\bullet}(S)$ qui induit les applications voulues en vertu du Théorème 1.1.

On peut généraliser le Théorème 1.2 en plusieurs variables :

Théorème 1.4. Soit S un schéma régulier. Pour tout entier naturel k, on a une bijection :

$$\operatorname{Hom}_{\mathcal{H}(S)}((\mathbf{Z} \times \mathbf{Gr})^k, \mathbf{Z} \times \mathbf{Gr}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Sm}/S^{\operatorname{opp}}\mathbf{Ens}}(K_0(-)^k, K_0(-)).$$

Par conséquent, toute structure algébrique sur $K_0(X)$ et fonctorielle en $X \in \text{Sm}/S$ se relève de manière unique sur $\mathbb{Z} \times \mathbf{Gr}$ à l'intérieur de la catégorie $\mathcal{H}(S)$.

Corollaire 1.5. Soit S un schéma régulier. L'objet $\mathbf{Z} \times \mathbf{Gr}$ est naturellement muni d'une structure de λ -anneau spécial dans la catégorie $\mathcal{H}(S)$.

On obtient par exemple les opérations $\lambda^i: \mathbf{Z} \times \mathbf{Gr} \to \mathbf{Z} \times \mathbf{Gr}$ pour $i \geqslant 1$ et les opérations d'Adams $\Psi^k: \mathbf{Z} \times \mathbf{Gr} \to \mathbf{Z} \times \mathbf{Gr}$ pour $k \in \mathbf{Z}$; elles induisent des applications $K_n(X) \to K_n(X)$ pour $X \in \mathrm{Sm}/S$ et $n \in \mathbf{N}$. Le produit sur les groupes $K_0(-)$ donne un accouplement $(\mathbf{Z} \times \mathbf{Gr}) \times (\mathbf{Z} \times \mathbf{Gr}) \to \mathbf{Z} \times \mathbf{Gr}$ dans $\mathcal{H}(S)$. On peut le raffiner, comme dans [9, page 74] en un morphisme $(\mathbf{Z} \times \mathbf{Gr}) \wedge (\mathbf{Z} \times \mathbf{Gr}) \to \mathbf{Z} \times \mathbf{Gr}$ dans $\mathcal{H}_{\bullet}(S)$, ce qui permet d'obtenir une structure multiplicative $K_i(X) \times K_j(X) \to K_{i+j}(X)$ pour $X \in \mathrm{Sm}/S$ et $(i,j) \in \mathbf{N}^2$. On peut vérifier que ces applications coïncident avec celles construires antérieurement. Dans le cas des opérations en une seule variable, la comparaison de cette construction avec celle de [13] repose sur la construction d'un morphisme de λ -anneaux (spéciaux) $R_{\mathbf{Z}} GL \to \mathrm{Hom}_{\mathcal{H}(S)}(\mathbf{Gr}, \mathbf{Z} \times \mathbf{Gr})$.

Remarque 1. Les résultats de cette section ont leurs homologues en K-théorie topologique complexe, les versions algébriques et topologiques étant compatibles via le foncteur «points complexes» $\mathcal{H}(\mathbf{C}) \to \mathcal{H}^{top}$ où \mathbf{C} désigne le corps des nombres complexes et \mathcal{H}^{top} la catégorie homotopique usuelle.

2. Stabilisation

Le Théorème 1.2 s'intéressait à toutes les opérations «ensemblistes» $K_0(-) \to K_0(-)$. La proposition suivante étudie les opérations additives, autrement dit les endomorphismes de $\mathbf{Z} \times \mathbf{Gr}$ en tant qu'objet groupe dans $\mathcal{H}_{\bullet}(S)$:

Proposition 2.1 (Principe de scindage). Soit S un schéma régulier. Les applications évidentes suivantes sont bijectives :

$$\operatorname{End}_{\operatorname{Sm}/S^{\operatorname{opp}}\operatorname{Ab}}(K_0(-)) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Sm}/S^{\operatorname{opp}}\operatorname{Ens}}(\operatorname{Pic}(-), K_0(-)) \xrightarrow{\sim} K_0(S)[[U]].$$

L'application de gauche est induite par le morphisme de préfaisceaux d'ensembles $\operatorname{Pic}(-) \to K_0(-)$ qui à la classe d'isomorphisme d'un fibré en droites L fait correspondre [L]. L'application de droite associe à $\tau:\operatorname{Pic}(-) \to K_0(-)$ la famille compatible des $\tau([\mathcal{O}(1)]) \in K_0(\mathbf{P}^n) \simeq K_0(S)[U]/(U^{n+1})$ où $U = [\mathcal{O}(1)] - 1 \in K_0(\mathbf{P}^n)$. On munit $K_0(S)[[U]]$ de la topologie pro-discrète évidente. L'opération d'Adams $\Psi^k: K_0(-) \to K_0(-)$ (pour $k \in \mathbf{Z}$) correspond à la série $(1+U)^k \in K_0(S)[[U]]$.

On note $\sigma: \mathbf{P}^1 \wedge (\mathbf{Z} \times \mathbf{Gr}) \to \mathbf{Z} \times \mathbf{Gr}$ le morphisme dans $\mathcal{H}_{\bullet}(S)$ induit par la multiplication par $u = [\mathcal{O}(1)] - 1 \in K_0(\mathbf{P}^1)$. Le théorème du fibré projectif implique que le morphisme $\mathbf{Z} \times \mathbf{Gr} \to \mathbf{R} \operatorname{Hom}_{\bullet}(\mathbf{P}^1, \mathbf{Z} \times \mathbf{Gr})$ déduit par adjonction de σ est un isomorphisme dans $\mathcal{H}_{\bullet}(S)$. Il en résulte, comme indiqué dans [14, §6.2], que dans la catégorie homotopique stable des \mathbf{P}^1 -spectres (cf. [4]), on peut construire un objet \mathbf{BGL} représenté par un Ω -spectre tel qu'on ait des isomorphismes $\mathbf{BGL}_n \simeq \mathbf{Z} \times \mathbf{Gr}$ dans $\mathcal{H}_{\bullet}(S)$ pour tout entier naturel n et que les morphismes d'assemblage $\mathbf{P}^1 \wedge \mathbf{BGL}_n \to \mathbf{BGL}_{n+1}$ s'identifient à σ via ces isomorphismes.

Définition 2.2. Soit $f: \mathbf{E} \to \mathbf{F}$ un morphisme dans $\mathcal{SH}(S)$ entre spectres représentés par des Ω -spectres. Le morphisme f est stablement fantôme si pour tout entier naturel n, le morphisme induit $\mathbf{E}_n \to \mathbf{F}_n$ dans $\mathcal{H}_{\bullet}(S)$ est nul.

L'objet **BGL** n'est *a priori* pas bien défini à isomorphisme *unique* près : ces isomorphismes ne sont uniques que *modulo* les morphismes stablement fantômes. Nous verrons plus bas comment résoudre cette difficulté technique.

Définition 2.3. Soit A un groupe abélien. On définit une application $\Omega_{\mathbf{P}^1}: A[[U]] \to A[[U]]$ par la formule $\Omega_{\mathbf{P}^1}(f) = (1+U)\frac{\mathrm{d}f}{\mathrm{d}U}$ et un système projectif A^{Ω} indexé par \mathbf{N} :

$$\ldots \xrightarrow{\Omega_{\mathbf{P}^{\mathbf{l}}}} A[[U]] \xrightarrow{\Omega_{\mathbf{P}^{\mathbf{l}}}} A[[U]] \xrightarrow{\Omega_{\mathbf{P}^{\mathbf{l}}}} A[[U]] \xrightarrow{\Omega_{\mathbf{P}^{\mathbf{l}}}} A[[U]].$$

Un endomorphisme τ de **BGL** dans $\mathcal{SH}(S)$ induit une famille de morphismes $\tau_n : \mathbf{BGL}_n \to \mathbf{BGL}_n$ dans $\mathcal{H}_{\bullet}(S)$ pour $n \in \mathbb{N}$. On peut identifier τ_n à un morphisme $\tau_n : \mathbf{Z} \times \mathbf{Gr} \to \mathbf{Z} \times \mathbf{Gr}$. La catégorie $\mathcal{SH}(S)$ étant additive, τ_n correspond à une opération additive $K_0(-) \to K_0(-)$, c'est-à-dire à un élément de $K_0(S)[[U]]$ d'après la Proposition 2.1. On peut vérifier que la compatibilité de τ avec les morphismes d'assemblage signifie que $\Omega_{\mathbf{P}^1}(\tau_{n+1}) = \tau_n$ pour tout entier naturel n. On a ainsi défini un morphisme

$$\operatorname{End}_{\mathcal{SH}(S)}(\mathbf{BGL}) \to \lim K_0(S)^{\Omega}.$$

Théorème 2.4. Soit S un schéma régulier. Il existe une suite exacte courte :

$$0 \to \mathbb{R}^1 \lim K_1(S)^{\Omega} \to \operatorname{End}_{\mathcal{SH}(S)}(\mathbf{BGL}) \to \lim K_0(S)^{\Omega} \to 0.$$

Le noyau de cette suite exacte fait intervenir le premier foncteur dérivé à droite R^1 lim du foncteur «limite projective». Les éléments de ce noyau sont les morphismes stablement fantômes. J'ignore si ce groupe R^1 lim A^{Ω} est nul pour tout groupe abélien A; c'est cependant le cas si A est fini ou divisible. En particulier, puisque $K_1(\operatorname{Spec} \mathbf{Z})$ est fini, il n'y a pas de morphisme stablement fantôme non nul $\operatorname{\mathbf{BGL}} \to \operatorname{\mathbf{BGL}}$ dans $\mathcal{SH}(\operatorname{Spec} \mathbf{Z})$. Ainsi, $\operatorname{\mathbf{BGL}}$ est bien défini à isomorphisme unique près dans $\mathcal{SH}(\operatorname{Spec} \mathbf{Z})$. On peut définir un objet $\operatorname{\mathbf{BGL}}$ canonique dans $\mathcal{SH}(S)$ pour tout schéma de base régulier S par changement de base via le morphisme $S \to \operatorname{Spec} \mathbf{Z}$.

On peut établir les mêmes résultats pour la version Q-localisée BGL_Q de BGL : on a un isomorphisme

$$\operatorname{End}_{\mathcal{SH}(S)}(\mathbf{BGL}_{\mathbf{Q}}) \xrightarrow{\sim} \lim (K_0(S) \otimes \mathbf{Q})^{\Omega}.$$

Définition 2.5. Soit $k \in \mathbb{Z} - \{0\}$. On note $\Psi^k = (1, \frac{1}{k}(1+U)^k, \frac{1}{k^2}(1+U)^k, \ldots) \in \lim \mathbb{Q}^{\Omega}$.

Les opérations d'Adams agissent donc sur BGL_Q dans $\mathcal{SH}(S)$. On peut en fait calculer complètement $\lim Q^{\Omega}$:

Proposition 2.6. Il existe un unique isomorphisme d'anneaux topologiques

$$\Sigma: \mathbf{Q}^{\mathbf{Z}} \xrightarrow{\sim} \lim \mathbf{Q}^{\Omega}$$

tel que pour tout $k \in \mathbb{Z} - \{0\}$, on ait $\Sigma((k^n)_{n \in \mathbb{Z}}) = \Psi^k$.

Cette proposition permet d'obtenir le théorème suivant :

Théorème 2.7. Soit S un schéma régulier. Il existe une décomposition canonique dans SH(S):

$$\mathbf{BGL}_{\mathbf{Q}} = \bigoplus_{i \in \mathbf{Z}} \mathbf{H}_{\mathrm{B}}^{(i)},$$

où, pour tout entier $k \in \mathbb{Z} - \{0\}$, l'opération d'Adams Ψ^k agit sur $\mathbf{H}_{\mathrm{B}}^{(i)}$ par multiplication par k^i .

3. Régulateurs

La méthode de démonstration du Théorème 1.2 permet de calculer de façon similaire les morphismes $\mathbf{Z} \times \mathbf{Gr} \to E$ pour un objet $E \in \mathcal{H}(S)$ assez général. On obtient par exemple :

Théorème 3.1. Soit k un corps parfait. Soit n un entier naturel. On note $K(\mathbf{Z}(n), 2n)$ l'espace d'Eilenberg–MacLane motivique défini dans [14, pages 596–597]. Il existe une bijection canonique :

$$\operatorname{Hom}_{\mathcal{H}(k)}(\mathbf{Z} \times \mathbf{Gr}, K(\mathbf{Z}(n), 2n)) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Sm}/k^{\operatorname{opp}}\mathbf{Ens}}(K_0(-), CH^n(-)).$$

De plus, les transformations naturelles $K_0(-) \to CH^n(-)$ sont les polynômes homogènes de degré total n en les classes de Chern.

Comme précédemment, on peut étudier les morphismes de **BGL** vers les spectres d'Eilenberg-MacLane motiviques \mathbf{H}_A (et leurs translatés) dans $\mathcal{SH}(k)$ pour tout groupe abélien A. On obtient ainsi le caractère de Chern $\mathrm{ch}\colon \mathbf{BGL} \to \mathbf{H_Q}$ et le calcul montre qu'il existe des morphismes stablement fantômes non nuls $\mathbf{BGL} \to \mathbf{H_Z}[1]$ dans $\mathcal{SH}(k)$.

Remarque 2. On pourrait remplacer la cohomologie motivique, représentée par $\mathbf{H}_{\mathbf{Z}}$, par une théorie cohomologique orientée plus générale, pourvu que celle-ci soit représentée par un objet de $\mathcal{SH}(k)$; on peut donc obtenir des caractères de Chern comme dans [2].

Remerciements

Je remercie mon directeur de thèse, Bruno Kahn, et toutes les autres personnes ayant eu quelque influence positive sur ma thèse.

Références

- [1] P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann–Roch, in : Séminaire de géométrie algébrique du Bois-Marie (1966–1967), in : Lecture Notes in Mathematics, vol. 225, Springer, 1971.
- [2] H. Gillet, Riemann–Roch theorems for higher algebraic K-theory, Advances in Mathematics 40 (3) (1981) 203–289.
- [3] P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Birkhaüser, 1999.
- [4] J.F. Jardine, Motivic symmetric spectra, Documenta Mathematica 5 (2000) 445–552.
- [5] J.-P. Jouanolou, Une suite exacte de Mayer–Vietoris en *K*-théorie algébrique, in : H. Bass (Ed.), Higher *K*-Theories, vol. I, in : Lecture Notes in Mathematics, vol. 341, Springer, 1973, pp. 293–316.

- [6] F. Lecomte, Simplicial schemes and Adams operations, in: Algebraic *K*-Theory an its Applications, Trieste, 1997, World Sci. Publishing, River Edge, NJ, 1999, pp. 437–449.
- [7] M. Levine, Lambda-operations, K-theory and motivic cohomology, Fields Institute Communications 16 (1997) 131–184.
- [8] J.-L. Loday, K-théorie algébrique et représentations de groupes, Annales Scientifiques de l'École normale supérieure (quatrième série) 9 (3) (1976) 309–377.
- [9] F. Morel, Théorie homotopique des schémas, Astérisque, vol. 256, Société Mathématique de France, 1999.
- [10] F. Morel, V. Voevodsky, A¹-homotopy theory of schemes, Publications Mathématiques de l'I.H.E.S. 90 (1999) 45–143.
- [11] D.G. Quillen, Higher algebraic K-theory I, in: H. Bass (Ed.), Higher K-Theories, vol. I, in: Lecture Notes in Mathematics, vol. 341, Springer, 1973, pp. 85–147.
- [12] J. Riou, Opérations sur la *K*-théorie algébrique et régulateurs via la théorie homotopique des schémas, Thèse de l'Université Paris 7 Denis Diderot, Juillet 2006, http://www.institut.math.jussieu.fr/theses/2006/riou/these-riou.pdf.
- [13] C. Soulé, Opérations en K-théorie algébrique, Canadian Journal of Mathematics 37 (1985) 488-550.
- [14] V. Voevodsky, A¹-homotopy theory, in: Proceedings of the International Congress of Mathematicians (Berlin), vol. I, Documenta Mathematica 1 (1998) 579–604 (Extra volume).
- [15] F. Waldhausen, Algebraic *K*-theory of spaces, in: A. Ranicki, N. Levitt, F. Quinn (Eds.), Algebraic and Geometric Topology, New Brunswick, NJ, 1983, in: Lecture Notes in Mathematics, vol. 1126, Springer, 1985, pp. 318–419.