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Abstract

Let Γ be a non-elementary subgroup of SL2(Z). If μ is a probability measure on T
2 which is Γ -invariant, then μ is a convex

combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds
under the weaker assumption that μ is ν-stationary, i.e. μ = ν ∗μ, where ν is a finitely supported, probability measure on Γ whose
support suppν generates Γ . The approach works more generally for Γ < SLd (Z). To cite this article: J. Bourgain et al., C. R.
Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Mesures invariantes et rigidité pour groupes non-abeliens d’automorphismes du tore. Soit Γ un sous-groupe non-
élementaire du groupe SL2(Z). Soit μ une mesure de probabilité Γ -invariante sur le tore T2. On démontre que μ est une moyenne
de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vraie sous l’hypothèse
que μ est ν-stationnaire, donc μ = ν ∗ μ, où ν est une probabilité sur Γ à support fini et engendrant Γ . L’approche se généralise
aux sous-groupes Γ de SLd (Z). Pour citer cet article : J. Bourgain et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Nous considérons l’action de SL2(Z) sur le tore T
2. Soit Γ un sous-groupe non-élémentaire du SL2(Z). Soit μ

une mesure sur T2 que nous supposons Γ -invariante, ou, moins restrictivement, que μ est ν-stationnaire pour une
probabilité ν sur Γ à support fini et tel que 〈suppν〉 = Γ . Nous démontrons que si μ n’est pas un multiple de la
mesure de Haar sur T

2, alors μ a une composante discrète. La méthode comporte plusieurs étapes et des techniques
d’analyse harmonique y jouent un rôle essentiel. Supposons la transformée de Fourier μ̂(b) �= 0 pour un élément
b ∈ Z

2\{0}. Le point de départ consiste à étudier l’ensemble Λc = {n ∈ Z
2; |μ̂(n)| > c} (c > 0 approprié) et de
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montrer que Λc est « riche », en un certain sens d’entropie métrique. On utilise ici divers arguments d’amplification
et un résultat d’équirépartition pour convolutions multiplicatives sur R, qui repose sur le théorème « somme-produit »
obtenu dans [3] et [4]. Ensuite on déduit de la structure de Λc des propriétés de « porosité » pour le support de μ et
finalement une composante discrète.

1. Introduction: main theorems

In this Note we present some new dichotomies for invariant and stationary measures μ on T
2 under the action of

SL2(Z)-subgroups.

Theorem A. If μ is invariant under the action of a non-elementary subgroup Γ of SL2(Z), then μ is a linear combi-
nation of Haar measure on T2 and an atomic measure supported by rational points.

Theorem B. The same conclusion holds if we assume μ is ν-stationary, i.e. μ = ν ∗ μ = ∑
g∈Γ ν(g)g∗μ, with ν a

finitely supported probability measure on SL2(Z) such that Γ = 〈suppν〉 is a non-elementary subgroup.

Theorem C. If for a point θ ∈ T2 the measure ηn = ν(n) ∗ δθ has Fourier coefficient |η̂n(b)| > δ for some b ∈ Z2\{0},
then θ admits a rational approximation∥∥∥∥θ − a

q

∥∥∥∥ < e−cn for some q ∈ Z+, |q| <
(‖b‖

δ

)C

(1)

with c,C > 0 depending on ν.

Theorem C answers the question of equidistribution, posed by Y. Guivarc’h [9].

Theorem D. Unless θ ∈ T
2 is rational, ν(n) ∗ δθ tend weak∗ to Lebesgue measure as n → ∞.

Comments. (1) The results extend to SLd(Z), assuming that supp(ν) generates a Zariski dense subgroup in SLd(R)

or, more generally, assuming that the smallest algebraic subgroup Hν ⊂ SLd(R) supporting ν, is strongly irreducible
(leaves invariant no finite union of R

d -hyperplanes) and contains a proximal element. Under these conditions the top
exponent is simple (see [8]).

(2) ν-stationary measures play an important role in the theory of boundaries of groups, and were systematically
used by H. Furstenberg and others in many works. In his paper [7] H. Furstenberg explores the relationship between
ν-stationary measures and Γ -invariant measures, where ν is a probability measure on Γ whose support generates Γ .
For a general action of Γ on a space X there is a big difference between the two concepts: indeed, if X is compact
ν-stationary measures always exist but there may well be no Γ -invariant probability measure whatsoever. In [7]
Furstenberg introduces the notion of stiff actions: an action of a group Γ on a space X is said to be ν-stiff if every
ν-stationary measure is in fact Γ -invariant, and proves stiffness for the action of Γ = SL(d,Z) on T

d where ν is a
(very) carefully chosen probability measure on SL(d,Z).

Furstenberg conjectured that this action is stiff for any ν whose support generates SL(d,Z). Theorem B and its
extension to d > 2 establish in particular this conjecture. Moreover, in conjunction with strong approximation results
such as those in [20,17], our results imply that the action is ‘superstiff’, in the sense that if 〈suppν〉 is Zariski dense
in SL(d,R), any ν-stationary measure on T

d is invariant under a finite index subgroup of SL(d,Z) (depending only
on supp ν).

(3) Theorem A may be viewed as a non-Abelian analogue of the well-known ×2,×3 invariant measure problem
on the circle T. Thus the conjecture states that if μ ∈ M(T) satisfies μ̂(n) = μ̂(2n) = μ̂(3n) for all n ∈ Z, then μ is
a combination of Haar and discrete measures. It is known that if we assume moreover that μ has positive entropy,
then μ is Haar (see [18] and [11,12,5] for the generalization to Z

d -actions on tori). However, in the context of ×2,×3
problem, or its toral analogues, statements such as Theorem D do not hold.

(4) We also recall that there are (Abelian and non-Abelian) counterparts for orbit closures. In the Abelian case,
these are the dichotomy results of H. Furstenberg [6] and D. Berend [1]. The non-Abelian problem for Γ -orbits, Γ ⊂
SLd(Z) a semigroup action on T

d , appears for example in G.A. Margulis list of open problems [14]. Contributions



J. Bourgain et al. / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 737–742 739
here include the work of G.A. Starkov [19] (for Γ a strongly irreducible subgroup of SLd(Z)), R. Muchnik [15,16]
(Γ a Zariski dense semigroup) and Guivarc’h–Starkov [10].

2. Idea of the proofs

Next, we give a brief overview of the proof of Theorem B. The proof of Theorem C (which implies D, B and A) uses
the same ingredients – see comments at the end. There are several distinct steps in the proofs which we summarize.

Assume μ is a ν-stationary probability measure on T
2 different from the Haar measure. Thus

μ̂(b) �= 0 for some b ∈ Z
2\{0}

and hence∑
g

∣∣μ̂(
gt (b)

)∣∣ · ν(r)(g) �
∣∣μ̂(b)

∣∣ = c (2)

for any convolution power ν(r) of ν. It is clear from (2) that μ has many large Fourier coefficients; in fact there is
δ > 0 such that∣∣∣∣

{
n ∈ Z

2: ‖n‖ � N and
∣∣μ̂(n)

∣∣ >
1

2
c

}∣∣∣∣ > Nδ

for all sufficiently large N . However, unless δ is sufficiently close to 2, we need a more structured set of large Fourier
coefficients. This is achieved in
Step 1 (amplification).

Lemma 1. There are positive constants β > 0 and κ > 0 such that for all sufficiently large N ∈ Z+, there is a set
F ⊂ Z

2 ∩ B(0,N) with the following properties

(a) |μ̂(k)| > β for k ∈F .
(b) |k − k′| > N1−κ if k �= k′ in F .
(c) |F | > βN2κ .

Our proof of Lemma 1 is rather involved. It is obtained by combining the following two ingredients.
Denote δ(x̄, ȳ) the angular distance on the projective space P(R2). The following statement is obtained by com-

bining Proposition 4.1 (p. 161) and Theorem 2.5 (p. 106) from [2]:

Proposition 2 (small ball estimate). There is a uniform estimate for x̄, ȳ ∈ P(R2)

∑
δ(gx̄,ȳ)<ε

ν(n)(g) < C
(
εα + e−cn

)

for some α, c,C > 0.

We also use the large deviation estimate for the Lyapunov exponent γ (Theorem 6.2, p. 131 in [2]), which gives:

Proposition 3. Uniformly in x, ‖x‖ = 1:

ν(n)

{
g:

∣∣∣∣1

n
log‖gx‖ − γ

∣∣∣∣ >
γ

10

}
< Ce−cn.

The combinatorial information that can be extracted from Proposition 2 on the set of large Fourier coefficients is
amplified using the following general statement on mixed multiplicative and additive convolution on R (which may
be of independent interest).
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Proposition 4. Given θ > 0,C > 1, there are s ∈ Z+ and C′ > 1 such that the following holds.
Let δ > 0 and η a probability measure on [ 1

2 ,1] satisfying

max
a

η
(
B(a,ρ)

)
< Cρθ for δ < ρ < 1.

Consider the image measure ν of η ⊗ · · · ⊗ η (s2-fold) under the map

(x1, . . . , xs2) �→ (x1 . . . xs) + (xs+1 . . . x2s ) + · · · + (xs2−s+1 . . . xs2).

Then

max
a

ν
(
B(a,ρ)

)
< C′ρ for δ < ρ < 1

where here B(a,ρ) = [a − ρ,a + ρ].

Proposition 4 is deduced from a set-theoretical statement, which is the ‘discretized ring conjecture’ (in the sense
of [13]); see [3,4].

Returning to Lemma 1, there is the following implication on the support of μ.
Step 2 (porosity property).

Using elementary harmonic analysis, one shows the following general result:

Lemma 5. Let μ be a probability measure on T
d, d � 1. Fix κ1, κ2 > 0.

Let N � M be large integers and assume

N
([|μ̂| > κ1

] ∩ B(0,N);M)
> κ2

(
N

M

)d

where for A ⊂ Z
d and R > 1, N (A;R) denotes the smallest number of balls of radius R needed to cover A.

Then there are points x1, . . . , xβ ∈ T
d such that

‖xα − xα′ ‖ >
1

M
for α �= α′,

∑
α

μ

(
B

(
xα,

1

N

))
> ρ(κ1, κ2) > 0.

Combined with Lemma 1 (d = 2 and taking κ1 = β = κ2,M = N1−κ), we obtain therefore

Lemma 6. For all N large enough, there are points x1, . . . , xβ ∈ T
2 such that ‖xα − xα′ ‖ > 1

N1−κ for α �= α′ and

∑
α

μ

(
B

(
xα,

1

N

))
> ρ.

Our next aim is to improve the porosity property obtained in Lemma 6 by decreasing the radius of the balls.
Step 3 (bootstrap).

Starting from the statement in Lemma 6 and using the group action, we prove

Lemma 7. For any fixed number C0, there is a collection of points {zα} ∈ T
2 such that

‖zα − zα′ ‖ >
1

2N1−κ
>

1

N
for α �= α′

and
∑
α

μ

(
B

(
zα,

1

NC0

))
> ρ(C0) > 0.
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The statement follows from a simple iterative construction. Under the action of SL2(Z)-elements, the balls become
elongated ellipses and intersecting different families leads to sets of smaller diameter.
Step 4 (rational approximation).

Assume

μ
(
B(x, ε)

)
> ετ (3)

where ε > 0 is small and τ > 0 a fixed exponent.
Take n ∼ ( 1

ε
)1/2 and make a Diophantine approximation∣∣∣∣x1 − a1

q

∣∣∣∣ <
1

q
√

n
,

∣∣∣∣x2 − a2

q

∣∣∣∣ <
1

q
√

n
(4)

where 1 � q � n and gcd(a1, a2, q) = 1. It follows from (3), (4) that

μ

(
B

(
a

q
,

2

q
√

n

))
> ετ

and the ν-stationarity of μ implies for any r ∈ Z+
∑
g

μ

(
B

(
g(a)

q
,

2‖g‖
q
√

n

))
· ν(r)(g) > ετ . (5)

Take r ∼ logn as to ensure that ‖g‖ < n1/3 if g ∈ suppν(r). It follows then from (5) and our choice of r that

ετ �
∑
b∈Z2

q

μ

(
B

(
b

q
,

1

2q

))
· ν(r)

({
g | ga ≡ b(modq)

})
.

A spectral gap of the form ‖ν(r)‖ � q−ω1 , r � logq , on �2(Z2
q) � C with some fixed ω1 > 0 depending only on ν,

yields the estimate

max
b∈Z2

q

ν(r)
({

g | ga ≡ b(mod q)
})

< q−ω, q <

(
1

ε

)τ/ω

. (6)

Recalling the conclusion of Lemma 7, the exponent τ in (3) may be taken to be an arbitrary small fixed positive
number. In particular, we may ensure that in (6), q < Q(ε) < ( 1

ε
)1/20. Thus we proved that there is ρ1 > 0 such that

for all ε > 0 small enough

μ(SQ(ε),ε1/4) > ρ1 (7)

where we denote

SQ,ε =
⋃
q<Q

⋃
(a,q)=1

B

(
a

q
, ε

)
. (8)

Step 5 (conclusion).
Starting from (7) with ε = ε0 small enough (depending on ρ1), we perform again an iterative bootstrap (as in

Step 3), invoking the following.

Lemma 8. Let SQ,ε be as above and let n = n(ε) ∈ Z+ satisfying

n < c log
1

ε
(c depending on ν).

Assume(
ν(n) ∗ μ

)
(SQ,ε) =

∑
ν(n)(g)μ

(
g−1(SQ,ε)

)
> κ.

Then we have μ(SQ,ε′) > κ − e−c2n where ε′ = e− 1
4 γ nε.
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The proof of Lemma 8 uses again Propositions 2 and 3.
Thus with Q = Q(ε0) fixed, ε is gradually decreased and in the limit we obtain

μ

({
a

q
;1 � q < Q(ε0), 0 � a1, a2 < q

})
>

1

2
ρ1 > 0.

This establishes Theorem B.
We conclude with some comments on the proof of Theorem C. For m � 1 we denote by

ηm = ν(m) ∗ δθ (9)

the measure on T
2 (δx stands here for the Dirac measure). In these notations, the assumption of Theorem C becomes∣∣η̂n(b)

∣∣ > δ where b ∈ Z
2 \ {0}. (10)

The proof of steps 1–4 is quantitative, and even though μm is not ν-stationary, these arguments can still be applied if
one is willing to sacrifice a few powers of ν.

For example, in step 1 we may conclude from (10) that for any k < n there is some N with c3k < logN < c4k

and a set F ⊂ Z
2 ∩ B(0,N) satisfying (a)–(c) of Lemma 1 for μ = μn−k and β = (δ/‖b‖)C (where C and c3, c4, as

well as all the other constants appearing below depend only on ν). Similarly modifying steps 2–4 we conclude that
for any k′ in the range C′ log(‖b‖/δ) < k′ < n there are Q,ε = Q−20 with c′

3k
′ < logQ < c′

4k
′ satisfying (cf. (7))

ηn−k′(SQ,ε) > (δ/‖b‖)C .
Let n′ = n − k′ for c5 log(‖b‖/δ) < k′ < n/2, with c5 a large constant. Since ηn′ = ν(n′) ∗ δθ , if c5 is sufficiently

large, iteration of Lemma 8 imply that δθ (SQ,ε′) > (δ/‖b‖)C − max(Q−c3 , e−c2n
′
) > 0 where ε′ < e− 1

4 γ n′
ε < e− 1

8 γ n,
i.e. θ ∈ SQ,ε′ . Since Q < (‖b‖/δ)C0 for some C0, Eq. (1) of Theorem C follows.
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