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Abstract

Let f,g : (Cn,0) → (C,0) be reduced germs of holomorphic functions. We show that f and g have the same multiplicity at 0,
if and only if, there exist reduced germs f ′ and g′ analytically equivalent to f and g, respectively, such that f ′ and g′ satisfy a
Rouché type inequality with respect to a generic ‘small’ circle around 0. As an application, we give a reformulation of Zariski’s
multiplicity question and a partial positive answer to it. To cite this article: C. Eyral, E. Gasparim, C. R. Acad. Sci. Paris, Ser. I
344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Multiplicité des singularités d’hypersurfaces complexes, satellites de Rouché et problème de Zariski. Soient f,g : (Cn,0) →
(C,0) des germes de fonctions holomorphes réduits. Nous montrons que f et g ont la même multiplicité en 0 si et seulement s’il
existe des germes réduits f ′ et g′ analytiquement équivalents à f et g, respectivement, tels que f ′ et g′ satisfassent une inégalité
du type de Rouché par rapport à un ‘petit’ cercle générique autour de 0. Comme application, nous donnons une reformulation de
la question de Zariski sur la multiplicité et une réponse partielle positive à celle-ci. Pour citer cet article : C. Eyral, E. Gasparim,
C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let f,g : (Cn,0) → (C,0) be reduced germs (at the origin) of holomorphic functions, with n � 2, Vf , Vg the cor-
responding germs of hypersurfaces in C

n, and νf , νg the multiplicities at 0 of Vf , Vg respectively. By the multiplicity
νf we mean the number of points of intersection, near 0, of Vf with a generic (complex) line in Cn passing arbitrarily
close to 0 but not through 0. As we are assuming that f is reduced, νf is also the order of f at 0, that is, the lowest
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degree in the power series expansion of f at 0. We denote by C(Vf ), C(Vg) the tangent cones at 0 of Vf , Vg , that is,
the zero sets of the initial polynomials of f and g respectively (cf. [13]).

In Section 2, we prove that νf = νg , if and only if, there exist reduced germs f ′ and g′ analytically equivalent to
f and g, respectively, such that |f ′(z) − g′(z)| < |f ′(z)|, for all z ∈ Ḋ, where Ḋ is the boundary of a generic ‘small’
disc around 0 (Theorem 2.6). We call such an inequality a Rouché inequality and we say that g′ is a Rouché satellite
of f ′.

In Section 3, we apply this result to Zariski’s multiplicity question. In particular, we show that the answer to
Zariski’s question is yes, if and only if, for any two topologically equivalent reduced germs f and g there exist
reduced germs f ′ and g′ analytically equivalent to f and g, respectively, such that g′ is a Rouché satellite of f ′
(Theorem 3.6). In addition, we answer positively Zariski’s question in the special case of ‘small’ homeomorphisms
for Newton nondegenerate isolated singularities (Corollary 3.3) and one-parameter families of isolated singularities
(Corollary 3.5).

2. Multiplicity and Rouché satellites

Let L be a line through 0 in C
n not contained in C(Vf ) ∪ C(Vg) (equivalently, L ∩ (C(Vf ) ∪ C(Vg)) = {0}).

Then νf (respectively νg) is the order at 0 of f|L (respectively g|L), and 0 is an isolated point of L ∩ Vf and L ∩ Vg

(cf. [2]). In particular, there exists a closed disc D ⊆ L around 0 such that, for any closed disc D′ ⊆ D around 0,
D′ ∩ (Vf ∪ Vg) = {0}. We shall call such a disc D a good disc for f and for g.

Definition 2.1. We say that g is a Rouché satellite of f if there exists a good disc D (for f and for g) such that f and
g satisfy a Rouché inequality with respect to the boundary Ḋ of D, that is,∣∣f (z) − g(z)

∣∣ <
∣∣f (z)

∣∣
for all z ∈ Ḋ.

Theorem 2.2. If g is a Rouché satellite of f , then νg = νf .

Proof. Let D ⊆ L be a good disc for f and for g (for some line L through 0 not contained in C(Vf ) ∪ C(Vg)) such
that |f|L(z)−g|L(z)| < |f|L(z)| for all z ∈ Ḋ. By Rouché theorem (cf. e.g. [7, Chapter VI, Theorem 1.6]), f|L and g|L
have the same number of zeros, counted with their multiplicities, in the interior of D. Thus, since f|L and g|L vanish
only at 0 on D, the orders at 0 of f|L and g|L are equal. In other words, νf = νg . �
Example 2.3. Consider the germs f,g : (C3,0) → (C,0) defined by

f (z1, z2, z3) = z2
1 + z3

2 + z3
3 + z3

1 + z4
2 and g(z1, z2, z3) = z2

1 + z3
2 + z3

3 + z4
1 + z6

2.

Then g is a Rouché satellite of f . Indeed, set L = {(z1,0, z3) ∈ C
3 | z1 = z3}; then

Vf ∩ L =
{
(0,0,0),

(
−1

2
,0,−1

2

)}
and Vg ∩ L = {

(0,0,0), (a,0, a), (ā,0, ā)
}
,

where a = (−1 − i
√

3)/2 and ā is the complex conjugate of a. So, the disc D ⊆ L of radius 1/4 is good for f and
for g, and, for all z ∈ Ḋ,

∣∣f (z) − g(z)
∣∣ � 5

44
<

2

43
�

∣∣f (z)
∣∣.

Hence g is a Rouché satellite of f . In fact, here, f is also a Rouché satellite of g. Indeed, for all z ∈ Ḋ, we have
∣∣f (z) − g(z)

∣∣ � 5

44
<

11

44
�

∣∣g(z)
∣∣.

Of course, in general, g may be a Rouché satellite of f without f being a Rouché satellite of g. For example,
take g = f/2. Also, it is not difficult to construct f and g such that νf = νg but neither g is a Rouché satellite of f

nor f a Rouché satellite of g. Take for example g = −f . Nevertheless, such an unpleasant situation is resolved by
Theorem 2.5 below.
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Definition 2.4. If there exists a germ of homeomorphism ϕ : (Cn,0) → (Cn,0) such that:

(1) ϕ(Vg) = Vf then f and g are called topologically equivalent (denoted f ∼t g);
(2) ϕ(Vg) = Vf and ϕ is an analytic isomorphism, then f and g are called analytically equivalent (denoted f ∼a g);
(3) g = f ◦ ϕ then f and g are called topologically right equivalent (denoted f ∼tr g).

Note that the definition makes sense only for reduced germs. In the special case of an isolated singularity, the
hypothesis ‘n � 2’ automatically implies that the germ is reduced. Note also that (2) ⇒ (1) and (3) ⇒ (1).

Theorem 2.2 has the weak following converse:

Theorem 2.5. If νf = νg , then there exist reduced germs f ′ ∼a f and g′ ∼a g such that g′ is a Rouché satellite of f ′.

Proof. By an analytic change of coordinates, one can assume that the zn-axis, Ozn, is not contained in the tangent
cones C(Vf ), C(Vg), so that f (0, . . . ,0, zn) �= 0 and g(0, . . . ,0, zn) �= 0, for any zn �= 0 close enough to 0. By the
Weierstrass preparation theorem, for z near 0, the germ f (z) can be represented as a product f (z) = f ′(z)f ′′(z),
where f ′′(z) is a germ of holomorphic function which does not vanish around 0 and where f ′(z) is of the form

f ′(z1, . . . , zn) = z
νf
n + z

νf −1
n f1(z1, . . . , zn−1) + · · · + fνf

(z1, . . . , zn−1),

with, for 1 � i � νf , fi ∈ C{z1, . . . , zn−1}, fi(0) = 0 and the order of fi at 0 is � i. Similarly g(z) = g′(z) g′′(z),
with g′′(z) �= 0 for all z near 0, and

g′(z1, . . . , zn) = z
νg
n + z

νg−1
n g1(z1, . . . , zn−1) + · · · + gνg (z1, . . . , zn−1),

with, for 1 � i � νg , gi ∈ C{z1, . . . , zn−1}, gi(0) = 0 and the order of gi at 0 is � i. Clearly f ′ and g′ are reduced,
and, since Vf = Vf ′ and Vg = Vg′ , f ′ ∼a f and g′ ∼a g. On the other hand, since νf = νg , f ′|Ozn

= g′|Ozn
. But for

any disc D ⊆ Ozn around 0 (in particular for any good disc in Ozn for f ′ and g′), |f ′(z)| = rνf �= 0 for all z ∈ Ḋ,
where r is the radius of D. �

Since the multiplicity is an invariant of the (embedded) reduced analytic type, we can summarize Theorems 2.2
and 2.5 as follows:

Theorem 2.6. The multiplicities νf and νg are the same, if and only if, there exist reduced germs f ′ ∼a f and g′ ∼a g

such that g′ is a Rouché satellite of f ′.

3. Applications to Zariski’s multiplicity question

In [14], Zariski posed the following question: if f ∼t g, then is it true that νf = νg? The question is, in general,
still unsettled (even for hypersurfaces with isolated singularities). The answer is, nevertheless, known to be yes in
several special cases the list of which can be found in the recent first author’s survey article [3]. In particular, Ephraim
[2] proved that multiplicity is preserved by ambient C1-diffeomorphisms; his paper inspired some of our proofs. In
this section, we give a partial positive answer to Zariski’s question in the special case of ‘small’ homeomorphisms for
Newton nondegenerate isolated singularities and one-parameter families of isolated singularities. In addition, we give
an equivalent reformulation of Zariski’s question in terms of Rouché satellites.

We start with the following result which asserts that if f and g are topologically right equivalent via a suf-
ficiently ‘small’ homeomorphism, then they have the same multiplicity. More precisely suppose f ∼tr g. Then
there are representatives f :U → C and g :U ′ ⊆ U → C of the germs f and g respectively and a homeomorphism
ϕ :U ′ → ϕ(U ′) ⊆ U such that ϕ(0) = 0 and g = f ◦ ϕ. Since f is uniformly continuous on a compact small ball
Br ⊆ U ′ around 0, there exists η > 0 such that, for any z,w ∈ Br ,

|z − w| < η ⇒ ∣∣f(z) − f(w)
∣∣ < inf

u∈Ḋ�

∣∣f(u)
∣∣,

where D� is a good disc at 0 for f and for g = f ◦ ϕ with radius � � r/2.
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Definition 3.1. We will say that the homeomorphism ϕ :U ′ → ϕ(U ′) ⊆ U is f-small if there exists a triple (r, �, η) as
above such that, for all z ∈ Br , |z − ϕ(z)| < inf{η,�}.
Theorem 3.2. With the above hypotheses and notation, if the homeomorphism ϕ :U ′ → ϕ(U ′) ⊆ U is f-small, then
νf = νg .

Proof. By hypothesis, for all z ∈ Ḋ� , ϕ(z) ∈ Br and |f(z) − f ◦ ϕ(z)| < infu∈Ḋ�
|f(u)| � |f(z)|. Therefore g = f ◦ ϕ is

a Rouché satellite of f. Then, by Theorem 2.2, νf = νg . �
The interest in topologically right equivalent germs with regard to Zariski’s question comes from the following.

By theorems of King [4], Perron [10], Saeki [11] and Nishimura [8], if f has an isolated singularity at 0 and a non-
degenerate Newton principal part, then the relation f ∼t g implies f ∼tr g. On the other hand, by another theorem
of King [5], for a one-parameter holomorphic family of isolated singularities (fs)s in C

n, with n �= 3, if the rela-
tion fs ∼t f0 holds for all s near 0, then so does fs ∼tr f0. So, when considering isolated Newton nondegenerate
singularities or families of isolated singularities, the Zariski problem refers immediately to right equivalent germs.

Corollary 3.3. Assume that f has an isolated critical point at 0 and a nondegenerate Newton principal part, and
suppose g ∼t f . In this case, there are representatives f :U → C and g :U ′ ⊆ U → C of f and g respectively and a
homeomorphism ϕ :U ′ → ϕ(U ′) ⊆ U such that ϕ(0) = 0 and g = f ◦ ϕ. If ϕ is f-small, then νf = νg .

Remark 3.4. If, in addition, f is convenient (cf. [6]), then the hypothesis of having an isolated singularity at 0 is
automatically satisfied (cf. [9]).

Corollary 3.3 is complementary to the result of Abderrahmane and Saia–Tomazella concerning μ-constant families
of convenient Newton nondegenerate (isolated) singularities (cf. [1] and [12]).

Corollary 3.5. Let (fs)s be a topologically constant (or μ-constant) one-parameter holomorphic family of isolated
hypersurface singularities, with n �= 3. In this case, for all s near 0, there are representatives f0 :U0 → C and fs :Us ⊆
U0 → C of f0 and fs respectively and a homeomorphism ϕs :Us → ϕ(Us) ⊆ U0 such that ϕs(0) = 0 and fs = f0 ◦ ϕs .
If, for all s near 0, ϕs is f0-small, then (fs)s is equimultiple (i.e., for all s near 0, νfs = νf0 ).

We conclude with the following nice consequence of Theorem 2.6 which is reformulation of Zariski’s multiplicity
question in terms of Rouché satellites:

Theorem 3.6. The answer to Zariski’s multiplicity question is yes, if and only if, the relation f ∼t g implies that there
exist reduced germs f ′ ∼a f and g′ ∼a g such that g′ is a Rouché satellite of f ′.
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