Probability Theory
The Bessel ratio distribution
[Distribution du rapport de deux probabilités de type Bessel]
Comptes Rendus. Mathématique, Tome 343 (2006) no. 8, pp. 531-534.

Soient X et Y deux variables aléatoires ; on en déduit la valeur du rapport X/Y dans le cas où X et Y sont des variables aléatoires dont les densités de probabilités sont de type Bessel.

Let X and Y be two random variables; then the exact distribution of the ratio X/Y is derived when X and Y are independent Bessel function random variables.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.09.031
Nadarajah, Saralees 1 ; Kotz, Samuel 2

1 School of Mathematics, University of Manchester, Manchester M60 1QD, UK
2 Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC 20052, USA
@article{CRMATH_2006__343_8_531_0,
     author = {Nadarajah, Saralees and Kotz, Samuel},
     title = {The {Bessel} ratio distribution},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {531--534},
     publisher = {Elsevier},
     volume = {343},
     number = {8},
     year = {2006},
     doi = {10.1016/j.crma.2006.09.031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.09.031/}
}
TY  - JOUR
AU  - Nadarajah, Saralees
AU  - Kotz, Samuel
TI  - The Bessel ratio distribution
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 531
EP  - 534
VL  - 343
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.09.031/
DO  - 10.1016/j.crma.2006.09.031
LA  - en
ID  - CRMATH_2006__343_8_531_0
ER  - 
%0 Journal Article
%A Nadarajah, Saralees
%A Kotz, Samuel
%T The Bessel ratio distribution
%J Comptes Rendus. Mathématique
%D 2006
%P 531-534
%V 343
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.09.031/
%R 10.1016/j.crma.2006.09.031
%G en
%F CRMATH_2006__343_8_531_0
Nadarajah, Saralees; Kotz, Samuel. The Bessel ratio distribution. Comptes Rendus. Mathématique, Tome 343 (2006) no. 8, pp. 531-534. doi : 10.1016/j.crma.2006.09.031. http://www.numdam.org/articles/10.1016/j.crma.2006.09.031/

[1] Bhattacharyya, B.C. The use of McKay's Bessel function curves for graduating frequency distributions, Sankhyā, Volume 6 (1942), pp. 175-182

[2] Chaubey, Y.P.; Nur Enayet Talukder, A.B.M. Exact moments of a ratio of two positive quadratic forms in normal variables, Communications in Statistics—Theory and Methods, Volume 12 (1983), pp. 675-679

[3] Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, Academic Press, San Diego, 2000

[4] Kotz, S.; Kozubowski, T.J.; Podgorski, K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering and Finance, Birkhäuser, Boston, 2001

[5] von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance, Annals of Mathematical Statistics, Volume 12 (1941), pp. 367-395

[6] Provost, S.B.; Rudiuk, E.M. The exact density function of the ratio of two dependent linear combinations of chi-square variable, Annals of the Institute of Statistical Mathematics, Volume 46 (1994), pp. 557-571

[7] Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, vols. 1–3, Gordon and Breach Science Publishers, Amsterdam, 1986

[8] Toyoda, T.; Ohtani, K. Testing equality between sets of coefficients after a preliminary test for equality of disturbance variances in two linear regressions, Journal of Econometrics, Volume 31 (1986), pp. 67-80

  • Gaunt, Robert E.; Li, Siqi The distribution of the product of independent variance-gamma random variables, Journal of Mathematical Analysis and Applications, Volume 539 (2024) no. 1, p. 24 (Id/No 128530) | DOI:10.1016/j.jmaa.2024.128530 | Zbl:7922124
  • Gaunt, Robert E.; Li, Siqi The variance-gamma ratio distribution, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 361 (2023), pp. 1151-1161 | DOI:10.5802/crmath.495 | Zbl:1525.60023

Cité par 2 documents. Sources : zbMATH