. Nous construisons deux types de cup-produits pour la cohomologie Hopf-cyclique. Lorsque l'algèbre de Hopf se réduit au corps de base, notre premier cup-produit se réduit au cup-produit de Connes en cohomologie cyclique ordinaire. Le deuxième cup-produit généralise l'application caractéristique de Connes–Moscovici pour l'action des algèbres de Hopf sur les algèbres.
We construct cup products of two different kinds for Hopf-cyclic cohomology. When the Hopf algebra reduces to the ground field our first cup product reduces to Connes' cup product in ordinary cyclic cohomology. The second cup product generalizes Connes–Moscovici's characteristic map for actions of Hopf algebras on algebras.
Accepté le :
Publié le :
@article{CRMATH_2005__340_1_9_0, author = {Khalkhali, Masoud and Rangipour, Bahram}, title = {Cup products in {Hopf-cyclic} cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {9--14}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.10.025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.025/} }
TY - JOUR AU - Khalkhali, Masoud AU - Rangipour, Bahram TI - Cup products in Hopf-cyclic cohomology JO - Comptes Rendus. Mathématique PY - 2005 SP - 9 EP - 14 VL - 340 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2004.10.025/ DO - 10.1016/j.crma.2004.10.025 LA - en ID - CRMATH_2005__340_1_9_0 ER -
Khalkhali, Masoud; Rangipour, Bahram. Cup products in Hopf-cyclic cohomology. Comptes Rendus. Mathématique, Tome 340 (2005) no. 1, pp. 9-14. doi : 10.1016/j.crma.2004.10.025. http://www.numdam.org/articles/10.1016/j.crma.2004.10.025/
[1] Equivariant cyclic cohomology of H-algebras, K-Theory, Volume 29 (2003) no. 4, pp. 231-252
[2] Noncommutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[3] Cyclic cohomology and the transverse fundamental class of a foliation, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., vol. 123, 1986, pp. 52-144
[4] Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys., Volume 198 (1998) no. 1, pp. 199-246
[5] Cyclic cohomology and Hopf algebras, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 97-108
[6] Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys., Volume 52 (2000) no. 1, pp. 1-28
[7] Secondary characteristic classes and cyclic cohomology of Hopf algebras, Topology, Volume 41 (2002) no. 5, pp. 993-1016
[8] Stable anti-Yetter–Drinfeld modules, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 8, pp. 587-590
[9] Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 9, pp. 667-672
[10] On Cartan homotopy formulas in cyclic homology, Manuscripta Math. 94 (1) (1997), pp. 111-132
[11] A new cyclic module for Hopf algebras, K-Theory, Volume 27 (2002) no. 2, pp. 111-131
Cité par Sources :