Nous définissons et étudions une classe de modules enlacés (modules anti-Yetter–Drinfeld stables) qui servent de coefficients pour l'homologie et la cohomologie Hopf-cyclique. En particulier, nous expliquons leurs liens avec les modules de Yetter–Drinfeld et les doublets de Drinfeld. Parmi les sources d'exemples de modules anti-Yetter–Drinfeld stables, nous trouvons des extensions de Hopf–Galois munies d'une version transposée de l'action de Miyashita–Ulbrich.
We define and study a class of entwined modules (stable anti-Yetter–Drinfeld modules) that serve as coefficients for the Hopf-cyclic homology and cohomology. In particular, we explain their relationship with Yetter–Drinfeld modules and Drinfeld doubles. Among sources of examples of stable anti-Yetter–Drinfeld modules, we find Hopf–Galois extensions with a flipped version of the Miyashita–Ulbrich action.
Accepté le :
Publié le :
@article{CRMATH_2004__338_8_587_0, author = {Hajac, Piotr M. and Khalkhali, Masoud and Rangipour, Bahram and Sommerh\"auser, Yorck}, title = {Stable {anti-Yetter{\textendash}Drinfeld} modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {587--590}, publisher = {Elsevier}, volume = {338}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2003.11.037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.crma.2003.11.037/} }
TY - JOUR AU - Hajac, Piotr M. AU - Khalkhali, Masoud AU - Rangipour, Bahram AU - Sommerhäuser, Yorck TI - Stable anti-Yetter–Drinfeld modules JO - Comptes Rendus. Mathématique PY - 2004 SP - 587 EP - 590 VL - 338 IS - 8 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.crma.2003.11.037/ DO - 10.1016/j.crma.2003.11.037 LA - en ID - CRMATH_2004__338_8_587_0 ER -
%0 Journal Article %A Hajac, Piotr M. %A Khalkhali, Masoud %A Rangipour, Bahram %A Sommerhäuser, Yorck %T Stable anti-Yetter–Drinfeld modules %J Comptes Rendus. Mathématique %D 2004 %P 587-590 %V 338 %N 8 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.crma.2003.11.037/ %R 10.1016/j.crma.2003.11.037 %G en %F CRMATH_2004__338_8_587_0
Hajac, Piotr M.; Khalkhali, Masoud; Rangipour, Bahram; Sommerhäuser, Yorck. Stable anti-Yetter–Drinfeld modules. Comptes Rendus. Mathématique, Tome 338 (2004) no. 8, pp. 587-590. doi : 10.1016/j.crma.2003.11.037. http://www.numdam.org/articles/10.1016/j.crma.2003.11.037/
[1] On modules associated to coalgebra Galois extensions, J. Algebra, Volume 215 (1999), pp. 290-317
[2] Brauer Groups, Hopf Algebras and Galois Theory, K-Monographs in Math., vol. 4, Kluwer Academic, Dordrecht, 1998
[3] Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Math., vol. 1787, Springer-Verlag, Berlin, 2002
[4] Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys., Volume 52 (2000), pp. 1-28
[5] Explicit Hopf–Galois description of SLe2iπ/3(2)-induced Frobenius homomorphisms (Kastler, D.; Rosso, M.; Schucker, T., eds.), Enlarged Proceedings of the ISI GUCCIA Workshop on Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions, Nova Science, Commack–New York, 1999, pp. 279-298
[6] Hopf–Galois extensions of algebras, the Miyashita–Ulbrich action, and Azumaya algebras, J. Algebra, Volume 121 (1989), pp. 488-516
[7] Hopf-cyclic homology and cohomology with coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004)
[8] Cyclic homology of Hopf Galois extensions and Hopf algebras (Preprint) | arXiv
[9] Quantum Groups, Graduate Texts in Math., vol. 155, Springer-Verlag, Berlin, 1995
[10] Invariant cyclic homology, K-Theory, Volume 28 (2003), pp. 183-205
[11] Non-additive ring and module theory II. -categories, -functors, and -morphisms, Publ. Math., Volume 24 (1977), pp. 351-361
Cité par Sources :