Approximation of fracture energies with p-growth via piecewise affine finite elements
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 34.

The modeling of fracture problems within geometrically linear elasticity is often based on the space of generalized functions of bounded deformation GSBD$$(Ω), p ∈ (1, ∞), their treatment is however hindered by the very low regularity of those functions and by the lack of appropriate density results. We construct here an approximation of GSBD$$ functions, for p ∈ (1, ∞), with functions which are Lipschitz continuous away from a jump set which is a finite union of closed subsets of C1 hypersurfaces. The strains of the approximating functions converge strongly in L$$ to the strain of the target, and the area of their jump sets converge to the area of the target. The key idea is to use piecewise affine functions on a suitable grid, which is obtained via the Freudenthal partition of a cubic grid.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018021
Classification : 49J45, 26B30, 74R10, 35A35
Mots-clés : Generalized functions of bounded deformation, p-growth, piecewise finite elements, brittle fracture
Conti, Sergio 1 ; Focardi, Matteo 1 ; Iurlano, Flaviana 1

1
@article{COCV_2019__25__A34_0,
     author = {Conti, Sergio and Focardi, Matteo and Iurlano, Flaviana},
     title = {Approximation of fracture energies with p-growth via piecewise affine finite elements},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018021},
     zbl = {1437.65182},
     mrnumber = {4003465},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2018021/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Focardi, Matteo
AU  - Iurlano, Flaviana
TI  - Approximation of fracture energies with p-growth via piecewise affine finite elements
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2018021/
DO  - 10.1051/cocv/2018021
LA  - en
ID  - COCV_2019__25__A34_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Focardi, Matteo
%A Iurlano, Flaviana
%T Approximation of fracture energies with p-growth via piecewise affine finite elements
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2018021/
%R 10.1051/cocv/2018021
%G en
%F COCV_2019__25__A34_0
Conti, Sergio; Focardi, Matteo; Iurlano, Flaviana. Approximation of fracture energies with p-growth via piecewise affine finite elements. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 34. doi : 10.1051/cocv/2018021. http://www.numdam.org/articles/10.1051/cocv/2018021/

[1] L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201–238. | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | MR | Zbl

[3] G. Anzellotti and M. Giaquinta, Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32 (1980) 101–136. | DOI | MR | Zbl

[4] G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. | DOI | MR | Zbl

[5] B. Bourdin, G.A. Francfort and J.-J. Marigo, The variational approach to fracture. J. Elast. 91 (2008) 5–148. | DOI | MR | Zbl

[6] A. Braides and V. Chiadó Piat, Integral representation results for functionals defined on SBV(Ω; Rm). J. Math. Pures Appl. (9) 75 (1996) 595–626. | MR | Zbl

[7] A. Braides, S. Conti and A. Garroni, Density of polyhedral partitions. Calc. Var. Part. Differ. Equ. 56 (2017) 28. | DOI | MR | Zbl

[8] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. | DOI | MR | Zbl

[9] A. Chambolle, An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2004) 929–954. | DOI | MR | Zbl

[10] A. Chambolle, Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. 83 (2004) 929–954]. J. Math. Pures Appl. 84 (2005) 137–145. | DOI | MR | Zbl

[11] A. Chambolle and V. Crismale, A Density Result in GSBDp with Applications to the Approximation of Brittle Fracture Energies. Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. | DOI | MR | Zbl

[12] A. Chambolle, S. Conti and G. Francfort, Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65 (2016) 1373–1399. | DOI | MR | Zbl

[13] A. Chambolle, S. Conti and G. Francfort, Approximation of a brittle fracture energy with a constraint of non-interpenetration. Arch. Ration. Mech. Anal. 228 (2018) 867–889. | DOI | MR | Zbl

[14] S. Conti, M. Focardi and F. Iurlano, Existence of minimizers for the 2d stationary Griffith fracture model. C. R. Acad. Sci. Paris Ser. I 354 (2016) 1055–1059. | DOI | MR | Zbl

[15] S. Conti, M. Focardi and F. Iurlano, Existence of Strong Minimizers for the Griffith Static Fracture Model in Dimension Two. Preprint (2016). | arXiv | MR

[16] S. Conti, M. Focardi and F. Iurlano, Integral representation for functionals defined on SBDp in dimension two. Arch. Ration. Mech. Anal. 223 (2017) 1337–1374. | DOI | MR | Zbl

[17] S. Conti, M. Focardi and F. Iurlano, A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems. Preprint (2018). | arXiv | MR

[18] G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) 43 (1997) 27–49 (1998). | DOI | MR | Zbl

[19] G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604. | DOI | MR | Zbl

[20] G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. | DOI | MR | Zbl

[21] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218. | DOI | MR | Zbl

[22] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | DOI | MR | Zbl

[23] M. Friedrich, A Korn-Poincaré-type Inequality for Special Functions of Bounded Deformation. Preprint (2015). | arXiv

[24] M. Friedrich, A Korn-type Inequality in SBD for Functions with Small Jump Sets. Preprint (2015). | arXiv | MR

[25] J.W. Hutchinson, A Course on Nonlinear Fracture Mechanics. Department of Solid Mechanics, Techn. University of Denmark (1989).

[26] F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51 (2014) 315–342. | DOI | MR | Zbl

[27] R. Kohn and R. Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1–35. | DOI | MR | Zbl

[28] P.-M. Suquet, Sur un nouveau cadre fonctionnel pour les équations de la plasticité. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A1129–A1132. | MR | Zbl

[29] R. Temam, Problèmes mathématiques en plasticité. Vol. 12 of Méthodes Mathématiques de l’Informatique. Gauthier-Villars, Montrouge (1983). | MR | Zbl

[30] R. Temam and G. Strang, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. | DOI | MR | Zbl

Cité par Sources :