We study a model for visco-elasto-plastic deformation with fracture, in which fracture is approximated via a diffuse interface model. We show that a discretized (in time) quasistatic evolution, converges to a solution of the continuous (in time) evolution, proving existence of a solution to our model.
DOI : 10.1051/cocv/2015005
Mots-clés : Plasticity, regularized fracture, viscous dissipation
@article{COCV_2016__22_1_148_0, author = {Jakab\v{c}in, Luk\'a\v{s}}, title = {A visco-elasto-plastic evolution model with regularized fracture}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {148--168}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2015005}, zbl = {1337.49017}, mrnumber = {3489380}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2015005/} }
TY - JOUR AU - Jakabčin, Lukáš TI - A visco-elasto-plastic evolution model with regularized fracture JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 148 EP - 168 VL - 22 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2015005/ DO - 10.1051/cocv/2015005 LA - en ID - COCV_2016__22_1_148_0 ER -
%0 Journal Article %A Jakabčin, Lukáš %T A visco-elasto-plastic evolution model with regularized fracture %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 148-168 %V 22 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2015005/ %R 10.1051/cocv/2015005 %G en %F COCV_2016__22_1_148_0
Jakabčin, Lukáš. A visco-elasto-plastic evolution model with regularized fracture. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 148-168. doi : 10.1051/cocv/2015005. http://www.numdam.org/articles/10.1051/cocv/2015005/
Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. XLIII (1990) 999–1036. | DOI | MR | Zbl
and ,Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models. Quart. Appl. Math. 73 (2015) 265–316. | DOI | MR | Zbl
and ,Quasistatic evolution in non-associative plasticity - the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. | DOI | MR | Zbl
, and ,Numerical simulation of a class of models that combine several mechanisms of dissipation: fracture, plasticity, viscous dissipation. J. Comput. Phys. 271 (2014) 397–414. | DOI | MR | Zbl
, , and ,B. Bourdin, Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Th.D. thesis, Université Paris Nord, France (1998).
Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound 9 (2007) 411–430. | DOI | MR | Zbl
,Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | DOI | MR | Zbl
, and ,The variational approach to fracture. J. Elasticity 91 (2008) 1–148. | DOI | MR | Zbl
, and ,G. Dal Maso and Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. | DOI | MR | Zbl
,N. Dunford and J.T. Schwartz, Linear operators. Part I. Wiley Classics Library. John Wiley and Sons Inc., New York (1988). | Zbl
L.C. Evans, Partial differential equations. Grad. Stud. Math. AMS, Rhode Island (1998).
Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | DOI | Zbl
and ,The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221 (1920) 133–178.
,A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Eqs. 51 (2014) 315–342. | DOI | Zbl
,L. Jakabčin, Modélisation, analyse et simulation numérique de solides combinant plasticité, rupture et dissipation visqueuse. Th.D. thesis, Université de Grenoble, France (2014).
Existence of solutions to a regularized model of dynamic fracture. M3AS 20 (2010) 1021–1048. | Zbl
, and ,Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 93 (1988) 15085–15117. | DOI
and ,Cité par Sources :