The Euler-Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret-Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and numerical simulations.
Mots-clés : Euler−poinsot rigid body motion, conjugate locus on surfaces of revolution, Serret−Andoyer metric, spins dynamics
@article{COCV_2014__20_3_864_0, author = {Bonnard, Bernard and Cots, Olivier and Pomet, Jean-Baptiste and Shcherbakova, Nataliya}, title = {Riemannian metrics on {2D-manifolds} related to the {Euler-Poinsot} rigid body motion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {864--893}, publisher = {EDP-Sciences}, volume = {20}, number = {3}, year = {2014}, doi = {10.1051/cocv/2013087}, mrnumber = {3264227}, zbl = {1293.49040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2013087/} }
TY - JOUR AU - Bonnard, Bernard AU - Cots, Olivier AU - Pomet, Jean-Baptiste AU - Shcherbakova, Nataliya TI - Riemannian metrics on 2D-manifolds related to the Euler-Poinsot rigid body motion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 864 EP - 893 VL - 20 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2013087/ DO - 10.1051/cocv/2013087 LA - en ID - COCV_2014__20_3_864_0 ER -
%0 Journal Article %A Bonnard, Bernard %A Cots, Olivier %A Pomet, Jean-Baptiste %A Shcherbakova, Nataliya %T Riemannian metrics on 2D-manifolds related to the Euler-Poinsot rigid body motion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 864-893 %V 20 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2013087/ %R 10.1051/cocv/2013087 %G en %F COCV_2014__20_3_864_0
Bonnard, Bernard; Cots, Olivier; Pomet, Jean-Baptiste; Shcherbakova, Nataliya. Riemannian metrics on 2D-manifolds related to the Euler-Poinsot rigid body motion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 864-893. doi : 10.1051/cocv/2013087. http://www.numdam.org/articles/10.1051/cocv/2013087/
[1] A Gauss-Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds. Discrete Contin. Dyn. Syst. A 20 (2008) 801-822. | MR | Zbl
, and ,[2] Mathematical Methods of Classical Mechanics, vol. 60. Translated from the Russian, edited by K. Vogtmann and A. Weinstein. 2nd edition. Grad. Texts Math. Springer-Verlag, New York (1989). | MR | Zbl
,[3] The conjugate locus for the Euler top. I. The axisymmetric case. Int. Math. Forum 2 (2007) 2109-2139. | MR | Zbl
and ,[4] Dynamical Systems, vol. IX. AMS Colloquium Publications (1927). | Zbl
,[5] Integrable Hamiltonian Systems. Geometry, Topology, Classification. Translated from the Russian original 1999. Chapman & Hall/CRC, Boca Raton, FL (2004) 730. | MR | Zbl
and ,[6] Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 1081-1098. | Numdam | MR | Zbl
, , and ,[7] Conjugate-cut loci and injectivity domains on two-spheres of revolution. ESAIM: COCV 19 (2013) 533-554. | Numdam | MR | Zbl
, and ,[8] O. Cots, N. Shcherbakova and D. Sugny, The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. 51 (2010) 092705, 44. | MR
,[9] Optimal Control in laser-induced population transfer for two and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. | MR | Zbl
, , , and ,[10] Nonisotropic 3-level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy. Discrete Contin. Dyn. Systems B 5 (2005) 957-990. | MR | Zbl
, and ,[11] Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. | MR | Zbl
and ,[12] O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2011) 177-196. | MR | Zbl
,[13] Introduction to quantum control and dynamics. Appl. Nonlinear Sci. Ser. Chapman & Hall/CRC (2008). | MR | Zbl
,[14] Introduction to nonlinear differential and integral equations. Dover Publications Inc., New York (1962). | MR | Zbl
,[15] The Serret−Andoyer formalism in rigid-body dynamics I. Symmetries and perturbations. Regul. Chaotic Dyn. 12 (2007) 389-425. | MR | Zbl
, , and ,[16] The cut loci and the conjugate loci on ellipsoids. Manuscripta Math. 114 (2004) 247-264. | MR | Zbl
and ,[17] Geometric Control Theory, vol. 52. Camb. Stud. Adv. Math. Cambridge University Press, Cambridge (1997). | MR | Zbl
,[18] Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Phys. Rev. A 65 (2002) 032301. | MR
, and ,[19] Closed form Integration of the Hitzl-Breakwell problem in action-angle variables. IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39.
and ,[20] Elliptic Functions and Applications, vol. 80. Appl. Math. Sci. Springer-Verlag, New York (1989). | MR | Zbl
,[21] Spin dynamics, basis of Nuclear Magnetic Resonance, 2nd edition. John Wiley and sons (2007).
,[22] Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc. 6 (1905) 237-274. | JFM | MR
,[23] The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962). | MR | Zbl
, , and ,[24] The Geometry of Total Curvature on Complete Open Surfaces, vol. 159. Camb. Tracts Math. Cambridge University Press, Cambridge (2003). | MR | Zbl
, and ,[25] The cut locus of a two-sphere of revolution and Toponogov's comparison theorem. Tohoku Math. J. 59 (2007) 379-399. | MR | Zbl
and ,[26] Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems. in Dynamical Systems VII. In vol. 16 of Encyclopedia of Math. Sci. Springer Verlag (1991) 10-81. | Zbl
and ,[27] Geometry, optimal control and quantum computing, Ph.D. Thesis. Harvard (2006). | MR
[28] Elliptic functions and efficient control of Ising spin chains with unequal coupling. Phys. Rev. A 77 (2008) 032340.
, and ,Cité par Sources :