In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron's return method, we establish some local controllability results for the position and velocities of the underwater vehicle. Examples with six, four, or only three controls inputs are given for a vehicle with an ellipsoidal shape.
Mots clés : underactuated underwater vehicle, submarine, controllability, Euler equations, return method, quaternion
@article{COCV_2014__20_3_662_0, author = {Lecaros, Rodrigo and Rosier, Lionel}, title = {Control of underwater vehicles in inviscid fluids}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {662--703}, publisher = {EDP-Sciences}, volume = {20}, number = {3}, year = {2014}, doi = {10.1051/cocv/2013079}, mrnumber = {3264219}, zbl = {1301.35098}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2013079/} }
TY - JOUR AU - Lecaros, Rodrigo AU - Rosier, Lionel TI - Control of underwater vehicles in inviscid fluids JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 662 EP - 703 VL - 20 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2013079/ DO - 10.1051/cocv/2013079 LA - en ID - COCV_2014__20_3_662_0 ER -
%0 Journal Article %A Lecaros, Rodrigo %A Rosier, Lionel %T Control of underwater vehicles in inviscid fluids %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 662-703 %V 20 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2013079/ %R 10.1051/cocv/2013079 %G en %F COCV_2014__20_3_662_0
Lecaros, Rodrigo; Rosier, Lionel. Control of underwater vehicles in inviscid fluids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 662-703. doi : 10.1051/cocv/2013079. http://www.numdam.org/articles/10.1051/cocv/2013079/
[1] Rotations, quaternions, and double groups. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1986). | MR | Zbl
,[2] Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems Control Lett. 45 (2002) 193-206. | MR | Zbl
, and ,[3] Stabilization of rigid body dynamics by internal and external torques. Automatica J. IFAC 28 (1992) 745-756. | MR | Zbl
, , and ,[4] Tracking control for an ellipsoidal submarine driven by Kirchhoff's laws. IEEE Trans. Automat. Control 53 (2008) 339-349. | MR
and ,[5] On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Problems 24 (2008) 045001, 18. | MR | Zbl
, , and ,[6] Detection of a moving rigid body in a perfect fluid. Inverse Problems 26 (2010) 095010. | MR | Zbl
, and ,[7] On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | MR | Zbl
,[8] Control and nonlinearity, vol. 136. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl
,[9] Guidance and Control of Ocean Vehicles. Wiley, New York (1994).
,[10] A nonlinear unified state-space model for ship maneuvering and control in a seaway. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005) 2717-2746. | MR | Zbl
,[11] Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Numdam | MR | Zbl
,[12] On the control of the motion of a boat. Math. Models Methods Appl. Sci. 23 (2013) 617-670. | MR
and ,[13] Ordinary differential equations, 2nd edn. Birkhäuser Boston, Mass. (1982). | MR | Zbl
,[14] A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. (N.S.) 64 (1964) 562-588. | MR
.[15] Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. Prikl. Matem. Mekhan. 44 (1980) 947-950. | MR | Zbl
,[16] The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc. Japan 38 (1986) 575-598. | MR | Zbl
,[17] A hybrid class underwater vehicle: Bioinspired propulsion, embedded system, and acoustic communication and localization system. Marine Tech. Soc. J. 45 (2001) 153-164.
, , and ,[18] Hydrodynamics. Cambridge Mathematical Library, 6th edition. Cambridge University Press, Cambridge (1993). With a foreword by R.A. Caflisch [Russel E. Caflisch]. | JFM | MR | Zbl
,[19] Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC 33 (1997) 331-346. | MR | Zbl
,[20] Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry. Phys. D 105 (1997) 130-162. | MR | Zbl
and ,[21] Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I. Funktsional. Anal. i Prilozhen. 15 (1981) 54-66. | MR | Zbl
and ,[22] Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79-108. | Numdam | MR | Zbl
, and ,[23] On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 139-165. | Numdam | MR | Zbl
, and ,[24] Smooth solutions for the motion of a ball in an incompressible perfect fluid. J. Funct. Anal. 256 (2009) 1618-1641. | MR | Zbl
and ,[25] Mathematical control theory, vol. 6. Texts in Applied Mathematics. Springer-Verlag, New York (1990). Deterministic finite-dimensional systems. | MR | Zbl
,[26] Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, New Jersey (2003).
and ,[27] Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differ. Eqs. 252 (2012) 4259-4288. | MR | Zbl
and ,[28] Lateral line inspired pressure feedforward for autonomous underwater vehicle control. In Proc. of IEEE/RSJ IROS Workshop Robot. Environmental Monitor (2012) 1-6.
, and ,Cité par Sources :