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DETERMINISTIC STATE-CONSTRAINED OPTIMAL CONTROL PROBLEMS
WITHOUT CONTROLLABILITY ASSUMPTIONS

Olivier Bokanowski1, 2, Nicolas Forcadel3 and Hasnaa Zidani4

Abstract. In the present paper, we consider nonlinear optimal control problems with constraints on
the state of the system. We are interested in the characterization of the value function without any
controllability assumption. In the unconstrained case, it is possible to derive a characterization of
the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses
the behavior of the value function along the trajectories arriving or starting from any position x. In
the constrained case, when no controllability assumption is made, the HJB equation may have several
solutions. Our first result aims to give the precise information that should be added to the HJB
equation in order to obtain a characterization of the value function. This result is very general and
holds even when the dynamics is not continuous and the state constraints set is not smooth. On the
other hand we study also some stability results for relaxed or penalized control problems.
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1. Introduction

This paper deals with the properties of the value function of optimal control problems with state constraints.
Consider the following control system:

ẏx(t) ∈ F (yx(t)) for a.e. t > 0, yx(0) = x, (1.1)

where F : R
n � R

n is a set-valued map with compact convex nonempty values. Let ϕ : R
n −→ R be a given

lower semicontinuous function. For a fixed (x, T ) ∈ R
n × [0, +∞), consider the following state-constrained

control problem:

ϑ(T, x) = min{ϕ(yx(T )), yx is a solution of (1.1), and yx(t) ∈ K for t ∈ [0, T ]}

where K ⊂ R
n is a closed set of state constraints.
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3 CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France.
forcadel@ceremade.dauphine.fr
4 Projet Commands, INRIA Saclay & ENSTA, 32 Bd Victor, 75739 Paris Cedex 15, France. Hasnaa.Zidani@ensta.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/cocv/2010030
http://www.esaim-cocv.org
http://www.edpsciences.org


996 O. BOKANOWSKI ET AL.

In the case when K = R
n and ϕ is continuous, it is known that the value function ϑ is the unique continuous

viscosity solution of a Hamilton-Jacobi equation [3,5]. In presence of state constraints, the continuity of this
value function is no longer satisfied, unless the dynamics satisfy a special controllability assumption on the
boundary of the state constraints. This assumption called “inward pointing qualification condition (IQ)” was
first introduced by Soner in [22]. It asks that at each point of K there exists a field of the system pointing
inward K. Clearly this condition ensures the viability of K (from any initial condition in K, there exists an
admissible trajectory which could stay for ever in K). Under this assumption, the value function ϑ is the
unique continuous constrained viscosity solution of a HJB equation (i.e., super solution on K and subsolution

on
◦
K) [13,19–22]:

∂tϑ(t, x) + H(x, Dxϑ(t, x)) = 0 for x ∈ K, t > 0, (1.2)
where

H(x, p) = sup
q∈F (x)

(−q · p).

Unfortunately, in many control problems, the condition (IQ) is not satisfied and the value function ϑ could be
discontinuous. In this framework, Frankowska introduced in [16–18] another controllability assumption, called
“outward pointing condition (OQ)”. This assumption states that every point x on the boundary ∂K can be
reached by a trajectory coming from the interior of K. Under this assumption it is still possible to characterize
the value function as the unique lower semicontinuous (for short lsc) solution of (1.2).

In absence of any assumption of controllability, the function ϑ is discontinuous and its characterization
becomes more complicate [4,7,23]. The main difficulty comes from the fact that the HJB equation (1.2) may
admit several solutions (in viscosity sense). However, it is known that the value function is the smallest lsc
viscosity supersolution of (1.2). This kind of characterization was used in [14] to propose an algorithm based
on viability theory.

Here, we first prove that ϑ is the unique solution of the Hamilton-Jacobi equation on K satisfying an ad-
ditional information at the boundary ∂K. This information can be dropped out whenever a controllability
assumption is satisfied, and then the corresponding HJB equation admits a unique viscosity solution. In the
case where no controllability assumption is satisfied, the additional information is important to ensure unique-
ness. Nevertheless, we will show that it is possible to forget this additional information using relaxation, or
penalization, methods. More precisely, if we consider a larger set Kε and a solution uε of the Hamilton-Jacobi
equation on Kε (which will not satisfy any additional information on the boundary so that the solution will
not be unique), then we prove that uε converges to the value function ϑ as ε goes to zero. On the other hand,
we also investigate the approximation of the value function ϑ by a sequence of value functions associated to
penalized control problems.

The paper is organized as follows. In Section 2, we introduce the problem and give the main results. In this
section we precise also the assumptions and fix the notations that will be used in the sequel. The proof of the
first main results (that is the characterization of the value function) is given in Section 3. In Section 4, we shall
discuss the case when inward or outward qualification assumption holds. Finally, Sections 5 and 6 are devoted
to the study of relaxation and penalization methods allowing to approximate the value function.

2. Main results

2.1. Settings of the problem and preliminary definitions

Let F : R
n � R

n be a set-valued map with closed convex nonempty values, and consider the associated
differential inclusion:

ẏx(s) ∈ F (yx(s)) for a.e. s > 0, yx(0) = x. (2.3)
For every given t > 0 and x ∈ R

n, we denote by S[0,t](x) the set of absolutely continuous solutions of the
system (2.3) defined on [0, t] and starting from x at time s = 0:

S[0,t](x) := {yx, ẏx(s) ∈ F (yx(s)) on [0, t], and yx(0) = x}.
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It is known that under suitable assumptions on F (see (H2)–(H3) below), for any t > 0 and x ∈ R
n, the set

S[0,t](x) is nonempty. Now, for any subset Ω of R
n, we define the set of admissible trajectories satisfying (2.3)

and lying in Ω by:
SΩ

[0,t](x) := {yx ∈ S[0,t](x), yx(s) ∈ Ω for s ∈ [0, t]}. (2.4)
Let K be a fixed set of R

n and let ϕ : R
n −→ R be a n function satisfying:

(H1) ϕ is a bounded lower semicontinuous function (lsc). Let M0 > 0 such that |ϕ(x)| ≤ M0, for every
x ∈ K. We can assume, without loss of generality, that M0 < 1 and ϕ ≡ 1 on Kc.

We stress on that the assumption M0 < 1 is not restrictive. The value 1 is just used as a reference constant
and can be replaced by any other constant.

For a fixed (x, t) ∈ R
n × [0, +∞), consider the following state-constrained control problem:

min{ϕ(yx(t)), yx ∈ SK
[0,t](x)}.

The value function ϑ : R
+ × R

n −→ R associated to this problem is defined by:

ϑ(t, x) :=

{
min{ϕ(yx(t)), yx ∈ SK

[0,t](x)} if SK
[0,t](x) �= ∅

1 otherwise.
(2.5)

Remark 2.1. Let us remark that we have adopted the convention ϑ(x, t) = 1, when the set of admissible
trajectories is empty: SK

[0,t](x) = ∅. Of course, we can change the value 1 by any other constant bigger than
‖ϕ‖L∞(K), and possibly equal to +∞. The only advantage in taking a finite constant is to have to deal with
finite valued functions. This is also useful for numerical purpose.

In the sequel, we assume the following assumptions:
(H2) The set-valued map F is upper semicontinuous (usc) and has nonempty compact convex images.
(H3) There exists k > 0 such that for every x ∈ R

n, we have supv∈F (x) ‖v‖ ≤ k(1 + ‖x‖).
(H4) K is a nonempty closed subset of R

n.
For some results, we will also assume more regularity on F :

(H5) For every R > 0, ∃CR > 0 such that F is CR-Lipschitz on the ball B(0, R) centred on 0 and with
radius R.

Remark 2.2. We know that under assumptions (H2)–(H3), for every x ∈ R
n and every T > 0, the differ-

ential equation (2.3) admits an absolutely continuous solution yx defined on [0, T ] (see [1]) and that the sets
S[0,T ](x) and SK

[0,T ](x) are compact. Moreover, under assumptions (H1)–(H4), the value function ϑ is lower
semicontinuous.

Let us recall that under assumptions (H2)–(H3) there also exists for all negative times a backward trajectory
of the system with the initial point x, that is an absolutely continuous solution of:

ẏ(s) ∈ F (y(s)) for a.e. s < 0, y(0) = x. (2.6)

We keep the notation yx for a solution of (2.6). Now, for every subset Ω of R
n and for each x ∈ Ω, we define

the set SΩ,−(x) of backward trajectories solutions of (2.6), lying in Ω during an interval [−ν, 0], for some ν > 0,
and arriving at x:

SΩ,−(x) = {yx solution of (2.6), ∃ν > 0, yx(s) ∈ Ω for s ∈ [−ν, 0]}.

Of course, for any x in
◦
Ω, the set SΩ,−(x) is non empty, while for x ∈ ∂Ω this set can be empty if all the

trajectories arriving at x come from outside Ω.
We now introduce some definitions which will be useful to characterize ϑ.
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Definition 2.3 (contingent epiderivative and F -derivative). Consider a function φ : R
+ × R

n −→ R.
(i) The contingent epiderivative of φ at (t, x) ∈ R

+ × R
n in the direction (τ, z) ∈ R × R

n is defined by

D↑φ(t, x)(τ, z) = lim inf
h→0+

z′→zs→τ

φ(t + hs, x + hz′) − φ(t, x)
h

·

(ii) Let (t, x) ∈ R
+ × R

n and let y be a trajectory solution of (2.6) and arriving at x at time t = 0. The
F -derivative of φ at (t, x) in the direction of y is defined by:

Dy
↑φ(t, x) = lim inf

h→0+

φ(t + h, y(−h)) − φ(t, x)
h

·

(iii) The subdifferential of φ at point (t, x), denoted D−φ(t, x), is the set of all vectors (qt, qx) ∈ R × R
n

satisfying:
φ(s, z) ≥ φ(t, x) + qt(s − t) + 〈qx, z − x〉 + o (|s − t| + |z − x|)

as R
+ × R

n � (s, z) −→ (t, x).

The contingent epiderivative is introduced in [1,2]. This notion is used in [16–18] to define the viscosity
solution for HJB equations. Here we have introduced also the F -derivative at a point (t, x). This derivative
gives information on the variation of a function φ along a trajectory arriving at x at time t.

From [2], Chapter 6, we have the following result:

(qt, qx) ∈ D−φ(t, x) ⇐⇒ qtτ + 〈qx, z〉 ≤ D↑φ(t, x)(τ, z) ∀τ ∈ R, z ∈ R
n. (2.7)

2.2. Main results

Consider the Hamiltonian function H : R
n × R

n �−→ R defined by

H(x, q) := sup
p∈F (x)

〈−p, q〉.

We now state the first main result:

Theorem 2.4 (characterisation of the value function). Let u : R
n × R �→ [−M0, M0] ∪ {1} be a lsc function.

We assume that (H1)–(H4) hold. the following assertions are equivalent:
(i) u = ϑ on K.
(ii) u satisfies

∀t > 0, x ∈ K, sup
p∈F (x)

−D↑u(t, x)(−1, p) ≥ 0, (2.8a)

∀t ≥ 0, x ∈ K, sup
y∈SK,−(x)

Dy
↑u(t, x) ≤ 0, (2.8b)

∀x ∈ K, u(0, x) = ϕ(x), and ∀t > 0, x ∈ Kc, u(t, x) = 1, (2.8c)

where supy∈SK,−(x) Dy
↑u(t, x) := −∞ when SK,−(x) = ∅.

If we assume moreover that (H5) holds true, then (i) and (ii) are also equivalent to the following assertion:
(iii) u is a bilateral viscosity solution (see Def. 2.6 below) of

∂tu(t, x) + H(x, Dxu(t, x)) ≥ 0 ∀t > 0, x ∈ K, (2.9a)

∂tu(t, x) + H(x, Dxu(t, x)) = 0 ∀t > 0, x ∈
◦
K, (2.9b)
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and u satisfies the boundary conditions:

∀x ∈
◦
K, lim inf

t→0+,y→x
u(t, y) = ϕ(x), (2.9c)

∀x ∈ K, u(0, x) = ϕ(x) and ∀t > 0, ∀x ∈ Kc, u(t, x) = 1, (2.9d)
∀t ≥ 0, ∀x ∈ ∂K, sup

y∈SK,−(x)

Dy
↑u(t, x) ≤ 0. (2.9e)

Remark 2.5. Let us point out that condition (2.8a) is equivalent to the classical notion of superoptimality of
the value function (which means that this function is nonincreasing along at least one trajectory satisfying the
differential inclusion (2.3)). The sketch of the proof of this known result will be given in Section 3.1.

Condition (2.8b) is less standard, it translates a notion of weak increase of the value function along admissible
backward trajectories (satisfying (2.3) and lying in K). When K is equal to R

n, or when K is an open set, we
can prove that condition (2.8b) can be expressed, in an infinitesimal way, by using the classical notion of
epi-derivative (see Prop. 3.5).

Definition 2.6 (bilateral viscosity solution of (2.9)). Let u : R+ × R
n → [−M0, M0] ∪ {1} be a lsc function.

We say that u is a bilateral viscosity solution of (2.9) iff:

(i) u is a bilateral solution of (2.9b) in
◦
K, that is, for every (t, x) ∈ R

+
∗ ×

◦
K and every (qt, qx) ∈ D−u(t, x),

we have:

qt + H(x, qx) = 0.

(ii) u satisfies (2.9a) on the boundary in the sense that for every (t, x) ∈ R
+
∗ × ∂K and every (qt, qx) ∈

D−u(t, x), we have:

qt + H(x, qx) ≥ 0.

(iii) u satisfies (2.9c)–(2.9e) pointwise.

Remark 2.7. The bilateral viscosity notion could be also defined by using the “touching from one side” test
functions, see [3,16].

In the case when F is continuous, the characterization given in the above theorem amounts to saying that
the value function is the only lsc solution of the HJB equation (2.9a)–(2.9b), satisfying the boundary condi-
tion (2.9c)–(2.9d) and the additional information (2.9e) with respect to any trajectory arriving at x ∈ ∂K
and lying in K during an interval [−ν, 0], for some ν > 0. This general characterization, and mainly informa-
tion (2.9e), seems difficult to handle in a numerical approximation algorithm for ϑ. However this theoretical
result explains clearly why the value function ϑ cannot be characterized only by means of a classical HJB equa-
tion. Actually, equation (2.9a)–(2.9b) does not contain the information that ϑ(·, yx(·)) is decreasing, for any
x ∈ ∂K, along the admissible trajectories yx(·) ∈ SK,−(x) arriving at x. We shall see in Section 4, that either
under inward-pointing or outward-pointing controllability assumption, assertion (2.9e) is satisfied whenever u is
a solution of the constrained HJB equation (2.9a)–(2.9b). However, in the general case when no controllability
assumption is made, the equation (2.9a)–(2.9b) with boundary conditions (2.9c)–(2.9d) may have several lsc
solutions. Among these solutions, the value function is the only one which satisfies also the property (2.9e).

In the sequel, we want to show how it is possible to approximate the value function by a sequence of solutions
of HJB equations. The first approach consists in enlarging the set K. More precisely, for every ε > 0, let Kε be
a closed subset of R

n defined by:

Kε := {x ∈ R
n; d(x,K) ≤ ε},

where d(·,K) denotes the distance function to the set K. Then, we have the following result:
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Theorem 2.8 (relaxation method). Assume (H1)–(H5).
For every ε > 0, consider uε : R

+ × R
n → [−M0, M0] ∪ {1} a lsc solution of the equation

∂tu(t, x) + H(x, Dxu(t, x)) ≥ 0 ∀t > 0, x ∈ Kε, (2.10a)

∂tu(t, x) + H(x, Dxu(t, x)) = 0 ∀t > 0, x ∈
◦
Kε, (2.10b)

∀x ∈
◦
Kε, lim inf

t→0+,y→x
u(t, y) = ϕ(x) = u(0, x), (2.10c)

∀x ∈ Kε, u(0, x) = ϕ(x) and ∀t > 0, x ∈ Kc
ε, u(t, x) = 1. (2.10d)

Then, for every x ∈ R
n and every t > 0, we have:

lim
ε→0

uε(t, x) = ϑ(t, x). (2.11)

Let us emphasize that enlarging the set K is not for ensuring uniqueness of the solution of (2.10). The above
result says that we can take, for every ε > 0, any lsc solution of (2.10), and then the convergence result (2.11)
holds.

Equation (2.10) can also be rewritten as a HJB equation with a Dirichlet boundary condition:

Proposition 2.9 (Dirichlet formulation of the HJB equation). Assume (H1)–(H5). Let ε ≥ 0 be fixed and let
u be a lsc function on R

+ × R
n with u(t, .) = 1 on Kc. Then the two following statements are equivalent:

(i) u is lsc viscosity solution of (2.10).
(ii) u is lsc viscosity solution (see Def. 2.10) of the Dirichlet problem:

∂tu(t, x) + H(x, Dxu(t, x)) = 0 x ∈
◦
Kε, t > 0, (2.12a)

u(t, x) = 1 x ∈ ∂Kε, t > 0, (2.12b)

∀x ∈ Kε, u(0, x) = ϕ(x), and ∀x ∈
◦
Kε, lim inf

t→0+
z→x

u(t, z) = u(0, x). (2.12c)

Definition 2.10 (bilateral viscosity solution of (2.12)). Let u : R+ × R
n → [−M0, M0] ∪ {1} be a lower

semicontinuous function and let Ω be a closed subset of R
n. We say that u is a lsc viscosity solution on Ω of

∂tu(t, x) + H(x, Dxu(t, x)) = 0 x ∈
◦
Ω, t > 0, (2.13a)

u(t, x) = 1 x ∈ ∂Ω, t > 0, (2.13b)

∀x ∈ Ω, u(0, x) = ϕ(x) and ∀x ∈
◦
Ω, lim inf

t→0+
z→x

u(t, z) = u(0, x), (2.13c)

iff
(i) u is a bilateral solution of (2.13a) in

◦
Ω, that is, for every (t, x) ∈ R

∗
+×

◦
Ω and every (qt, qx) ∈ D−u(t, x),

we have:
qt + H(x, qx) = 0.

(ii) u satisfies the boundary condition (2.13b) in the sense that for every (t, x) ∈ R
∗
+ × ∂Ω and every

(qt, qx) ∈ D−u(t, x), we have:

max (qt + H(x, qx), u − 1) ≥ 0.

(iii) u satisfies the initial condition (2.13c) pointwise.
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Remark 2.11. First order HJB equations with boundary conditions arise usually in optimal exit time problems.
These problems have been studied in several papers [6–8,11,13]. It is known, that for HJB equations with
Dirichlet boundary conditions, uniqueness results for viscosity solution do not hold when no controllability
assumption is made on the boundary of the domain to exit.

Now, consider, for every ε > 0, the continuous function given by:

gε(x) = min

(
− 1 +

1
ε
d(x,K), 1

)
for x ∈ R

n. (2.14)

Then we have:

Theorem 2.12 (penalization method). Assume that (H1)–(H5) hold true.
For every ε > 0, consider ϑε the unique lsc bounded viscosity solution of

min(∂tv(t, x) + H(x, Dxv(t, x)), v(t, x) − gε(x)) = 0 x ∈ R
n, t > 0, (2.15)

v(0, x) = max(ϕ(x), gε(x)) x ∈ R
n. (2.16)

Then, for every x ∈ K and every t > 0, we have:

lim
ε↘0+

ϑε(t, x) = ϑ(t, x).

Remark 2.13. In the above theorem, the value function ϑ is characterized as the limit of a sequence of (unique)
viscosity solutions of variational inequalities. For every ε > 0, we will prove that ϑε is the value function of a
penalized control problem with a particular L∞-norm penalization, see Section 6.

Remark 2.14. In this paper, in order to simplify the presentation of the main results and main ideas, we have
focused on Mayer’s problem. Yet, with a simple change of variables it is easy to extend all the results to the
general Bolza problem (i.e., when the cost function includes also a distributive part).

3. Proof of Theorem 2.4

3.1. Preliminary results

Firstly, we give some properties satisfied by the value function ϑ.

Proposition 3.1 (dynamic programming principle). Assume (H1)–(H4). Then the value function ϑ satisfies
the following:

(i) For all x ∈
◦
K,

lim inf
t→0+,z→x

ϑ(t, z) = ϑ(0, x) = ϕ(x).

(ii) Dynamic programming principle: For all x ∈ R
n, for all t > 0 and τ ∈ [0, t], we have:

⎧⎨
⎩

ϑ(t, x) = min
yx∈SK

[0,τ](x)
ϑ(t − τ, yx(τ)) if SK

[0,τ ](x) �= ∅,

ϑ(t, x) = 1 otherwise.

(iii) Backward dynamic programming principle: For all x ∈ R
n, t ≥ 0, yx ∈ SK,−(x), and τ small enough,

we have:
ϑ(t, x) ≥ ϑ(t + τ, yx(−τ)).
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Proof. (i) By definition of ϑ, we know that ϑ(0, x) = ϕ(x) for every x ∈ K. Now, let x be in
◦
K and consider

two sequences (zi)i≥1 ⊂
◦
K and (ti)i ⊂ ]0, +∞[ such that

ti −→ 0, zi → x, and ϑ(ti, zi) −→ lim inf
t→0+
z→x

ϑ(t, z) when i → +∞.

For every i, we consider a trajectory yi solution of: ẏi(s) ∈ F (yi(s)) on (0, ti) and y(ti) = x. Since x ∈
◦
K, for i

big enough, yi(0) ∈
◦
K and yi belongs to SK

[0,ti]
(yi(0)). Hence

ϑ(ti, yi(0)) ≤ ϕ(yi(ti)) = ϕ(x). (3.17)

Using the fact that yi(0) → x at i → ∞, it yields

lim inf
t→0+
z→x

ϑ(t, z) ≤ lim
i→+∞

ϑ(ti, yi(0)) ≤ ϕ(x).

Taking into account the fact that ϑ is lsc, we conclude (i).
The dynamic programming principle (ii)–(iii) can be easily obtained from the definition of ϑ. �
In the sequel of the section, we give some interpretations to the sub and superoptimality principles of the

DPP. These statements are well known in the case where the state is not constrained (i.e. K = R
n) [3,16]. In

presence of state constraints, our statements can be seen as a generalization of those studied in [17,18] where a
qualification condition is required.

Proposition 3.2 (super-optimality). Let u : R
+ × R

n −→ R be a bounded lower semicontinuous function.
Assume (H2)–(H3), then the following three statements are equivalent:

(i) ∀t > 0, ∀x ∈ R
n, we have:

sup
p∈F (x)

−D↑u(t, x)(−1, p) ≥ 0; (3.18)

(ii) ∀(t, x) ∈ R
+ × R

n, ∃yx ∈ S[0,t](x), ∀τ ∈ [0, t], u(t − τ, yx(τ)) ≤ u(t, x).
(iii) ∀t > 0, ∀x ∈ R

n and ∀(qt, qx) ∈ D−u(t, x), we have:

qt + H(x, qx) ≥ 0.

Proof. This proposition is a straightforward consequence of [16], Theorem 3.2 and Lemma 4.3, using the change
of variable τ → t − τ . �

Remark 3.3. Let us point out that assertion (ii) of the above proposition insures the existence of a trajectory yx,
starting from yx(0) = x, and such that u(t − ·, yx(·)) is decreasing. Nothing guarantees that yx is admissible
(and stays in K). In the case when the trajectory yx leaves K, if we assume further that u is bounded from
above by 1 and u(s, z) = 1 whenever z �∈ K, then we obtain u(t − ·, yx(·)) ≡ 1 on [0, t].

An immediate consequence of the above proposition is the following:

Corollary 3.4 (super-optimality of the value function). Assume (H1)–(H4). Then, the value function ϑ satisfies
for all t > 0, x ∈ R

n

sup
p∈F (x)

−D↑ϑ(t, x)(−1, p) ≥ 0.
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Proof. Let (t, x) be in R
+ × R

n. We claim that

∃yx ∈ S[0,t](x), ∀τ ∈ [0, t], ϑ(t − τ, yx(τ)) ≤ ϑ(t, x). (3.19)

To prove this assertion, we first consider the case when SK
[0,t](x) �= ∅. By compactness of SK

[0,t](x) and since ϑ is
lsc, we obtain from Proposition 3.1(ii) the existence of yx ∈ SK

[0,t](x) ⊂ S[0,t](x) such that ϑ(0, yx(t)) = ϑ(t, x).
Hence, for all τ ∈ [0, t], we get from Proposition 3.1(ii) (with z = yx(τ)) that

ϑ(t − τ, z) ≤ ϑ(0, yz(t − τ)) ≤ ϑ(0, yx(t)) ≤ ϑ(t, x).

Now, if SK
[0,t](x) = ∅, thus the definition of ϑ yields ϑ(t, x) = 1. Moreover, since ϑ is bounded by 1, for any

trajectory yx ∈ S[0,t](x), we have
ϑ(t − τ, yx(τ)) ≤ 1 = ϑ(t, x).

Therefore, (3.19) is always satisfied for any (t, x) ∈ R
+ × R

n. We conclude by Proposition 3.2. �

Proposition 3.5 (sub-optimality). Assume (H2)–(H3) and let u : R
+ × R

n −→ R be a lower semicontinuous
function and Ω be a subset of R

n. Then the following two statements are equivalent:

(i) ∀t ≥ 0 and ∀x ∈ Ω, sup
y∈SΩ,−(x)

Dy
↑u(t, x) ≤ 0.

(ii) ∀t ≥ 0, ∀x ∈ Ω, ∀τ ∈ [0, t] and ∀yx ∈ SΩ
[0,τ ](x), we have u(t, x) ≤ u(t − τ, yx(τ)).

Furthermore, if (H5) is also satisfied and Ω is an open subset, then (i) and (ii) are equivalent to each of the
following assertions:

(iii) ∀t ≥ 0, ∀x ∈ Ω, max
p∈F (x)

D↑u(t, x)(1,−p) ≤ 0.

(iv) (a) ∀x ∈ Ω, lim inft→0,Ω�y→x u(t, y) = u(0, x).
(b) ∀t > 0, ∀x ∈ Ω and ∀(qt, qx) ∈ D−u(t, x), we have: qt + H(x, qx) ≤ 0.

To prove this proposition, we will need the following lemma whose proof can be found in [15].

Lemma 3.6 (non-increasing functions). Let v : [0, T ] �→ R be a lsc function such that

D+v(s) = lim inf
h→0+

v(s + h) − v(s)
h

≤ 0 ∀s ∈ [0, T ).

Then v is non-increasing on [0, T ].

Proof of Proposition 3.5. The proof will be split in five steps.

Step 1. Under assumptions (H2)–(H3), let us first prove the equivalence (i) ⇐⇒ (ii).
Assume (i) and consider t > 0, τ ∈ [0, t]. Let yx ∈ SΩ

[0,τ ](x), and define v : R �→ R by

v(s) = u(t − τ + s, yx(τ − s)).

We want to show that v is non-increasing by using Lemma 3.6. For s ∈ [0, τ), we set x1 = yx(τ − s) (clearly, x1

depends on τ and s). Thus we get:

D+v(s) = lim inf
h→0+

u(t − τ + s + h, yx(τ − s − h)) − u(t − τ + s, yx(τ − s))
h

= lim inf
h→0+

u(t − τ + s + h, yx1(−h)) − u(t − τ + s, x1)
h

= D
yx1
↑ u(t − τ + s, x1) ∀s ∈ [0, τ [
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where we have set yx1(−h) := yx(τ − s − h) for h small enough. This backward trajectory yx1 belongs to
SΩ,−(x1), and thanks to (i), we deduce that D+v(s) ≤ 0 for s ∈ [0, τ). Therefore, Lemma 3.6 implies that v is
nonincreasing on [0, τ ] and then v(τ) ≤ v(0), which gives that

u(t, x) ≤ u(t − τ, yx(τ)).

Conversely, assume that (ii) holds true and let (t, x) ∈ R
+ × R

n. The case when SΩ,−(x) = ∅ is trivial. Let us
consider that SΩ,−(x) �= ∅ and let yx ∈ SΩ,−(x). There exists ν > 0 such that

ẏx(s) ∈ F (yx(s)) on [−ν, 0] and yx(0) = x.

For every h ∈ [0, ν], we define xh = yx(−h) and consider the trajectory yxh
defined by: yxh

(s) = yx(s − h) for
s ∈ [0, h]. In particular, yxh

belongs to SΩ
[0,h](xh). From (ii) we get:

u(t + h, xh) ≤ u(t, yxh
(h))

which gives
u(t + h, yx(−h)) ≤ u(t, x).

Therefore,

Dyx

↑ u(t, x) = lim inf
h→0+

u(t + h, yx(−h)) − u(t, x)
h

≤ 0,

which proves assertion (i).

Step 2. From now on, we assume also that (H5) is fulfilled and that Ω is an open set. We first prove that (i)
=⇒ (iii). Let t ≥ 0, x ∈ Ω and p ∈ F (x). Filippov’s Theorem implies that there exists yx ∈ SΩ,−(x) (with
yx(0) = x) and such that

lim
h→0+

yx(−h) − x

h
= −p.

Let (hn)n, with hn → 0, be a sequence of positive numbers such that:

lim
n→+∞

u(t + hn, yx(−hn)) − u(t, x)
hn

= Dyx

↑ u(t, x).

For every n ≥ 0, set qn := −yx(−hn) − x

hn
. Clearly, qn tends to p when n goes to +∞. Moreover,

D↑u(t, x)(1,−p) = lim inf
h→0+
q→p

u(t + h, x − hq) − u(t, x)
h

≤ lim
n→+∞

u(t + hn, x − hnqn) − u(t, x)
hn

= Dyx

↑ u(t, x).

We deduce that for every p ∈ F (x), we have D↑u(t, x)(1,−p) ≤ 0 and (iii) holds true.

Step 3. The assertion (iii)=⇒(ii) can be obtained by using similar arguments as in [16], Theorem 3.3. Let us
point out that the paper [16] deals only with final state constraints (K = R

n). However, the proof is still valid
when we consider that the set of trajectories is in an open set Ω. For the reader’s convenience, we give the main
steps of the proof. Let us assume (iii) and fix t ≥ 0, x ∈ Ω, τ ∈ [0, t], and yx ∈ SΩ

[0,τ ](x). Now, we consider the
application

T : [0, τ ] � s �−→

⎛
⎝ t − τ + s

yx(τ − s)
u(t − τ, yx(τ))

⎞
⎠ .
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It is clear that T (0) := (t − τ, yx(τ), u(t − τ, yx(τ))) belongs to the epigraph of u, denoted Ep(u). On the other
hand, by (iii) and thanks to [2], Proposition 6.1.4, we obtain that (1,−p, 0) is a contingent5 direction to Ep(u)
at every (γ, ξ, z) ∈ R

+ × Ω × R such that

(γ, ξ, z) ∈ Ep(u), and p ∈ F (ξ).

Therefore, u being lsc, by using the viability theorem (see the proof of [16], Thm. 3.3), we get that T (s) ∈ Ep(u)
for every s ∈ [0, τ ]. We deduce that:

u(t − τ + s, yx(τ − s)) ≤ u(t − τ, yx(τ)) ∀s ∈ [0, τ ]

which proves (ii).
Let us also remark that the same arguments give the following implication:

[
∀t > 0, ∀x ∈ Ω, max

p∈F (x)
D↑u(t, x)(1,−p) ≤ 0

]

=⇒
[
∀t ≥ 0, ∀x ∈ Ω, ∀τ ∈ [0, t[, ∀yx ∈ SΩ

[0,τ ](x), u(t, x) ≤ u(t − τ, yx(τ))
]
. (3.20)

Indeed, due to the inversion of the time, the fact that we do not assume the left hand side property at initial
time implies that we do not recover the right hand side at the final time τ = t.
Step 4. Now we assume that (iii) is satisfied and we will prove that (iv) holds true. From the previous steps, we
know that (i) and (ii) are also satisfied. Then assertion (iv)(b) can be deduced from (2.7) and (iii). It remains
to prove assertion (iv)(a). For this, let us fix x ∈ Ω. Let (zi)i ⊂ Ω and (ti)i ⊂ ]0, +∞[ such that:

zi −→ x, ti −→ 0, and u(ti, zi) −→ lim inf
t→0+z→x

u(t, z) when i → +∞.

Let (yi)i be a sequence of trajectories satisfying, for every i ≥ 1, ẏi(s) = F (y(s)) on (0, ti) and yi(ti) = x. By
Gronwall Lemma, we get yi(0) → x when i → +∞. Moreover, by (ii) we have: u(ti, yi(0)) ≤ u(0, x). Therefore,
since u is lsc, we deduce:

u(0, x) ≤ lim inf
t→0+z→x

u(t, z) ≤ lim
i→+∞

u(ti, yi(0)) ≤ u(0, x).

Step 5. Finally, we prove that (iv) =⇒ (ii). From [16], Lemma 4.4, we know that (iv)(b) is equivalent to the
assertion

∀t > 0, ∀x ∈ Ω, max
p∈F (x)

D↑u(t, x)(1,−p) ≤ 0,

and by (3.20) we conclude that

∀t ≥ 0, ∀x ∈ Ω, ∀τ ∈ [0, t[, ∀yx ∈ SΩ
[0,τ ](x), u(t, x) ≤ u(t − τ, yx(τ)). (3.21)

Now, it remains just to prove that the assertion (3.21) is still true up to time τ = t. Let t ≥ 0, x ∈ Ω and
yx ∈ SΩ

[0,t](x). Let (zi)i ⊂ Ω and (ti)i a sequence of positive numbers such that:

zi → yx(t), ti → 0+, u(ti, zi) → u(0, yx(t)).

Consider, for every i ≥ 1, a trajectory yi satisfying ẏi(s) ∈ F (yi(s)), yi(t − ti) = zi and ‖yi − yx‖L∞ → 0.
The Gronwall Lemma yields that yi(0) converges to x. Moreover, since Ω is an open set, yi ⊂ Ω on [0, ti] for i

5Let K be a nonempty subset of R
n and z ∈ K. A vector v in R

n is said a contingent direction to K at z if and only if:

lim inf
h→0+

d

(
v,

K − z

h

)
= 0.
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big enough. Therefore, by (3.21), we obtain: u(t, yi(0)) ≤ u(ti, yi(t − ti)) = u(ti, zi). Since u is lsc, by (iv)(a)
we conclude:

u(t, x) ≤ lim
i→∞

u(t, yi(0)) ≤ lim
i→∞

u(ti, zi) = u(0, yx(t))

which proves that (3.21) is true for τ = t. �

Corollary 3.7 (sub-optimality of the value function). Assume (H1)–(H4). Then, the value function ϑ satisfies
for every (t, x) ∈ R

+ × R
n

sup
y∈SK,−(x)

Dy
↑ϑ(t, x) ≤ 0.

Proof. This is a consequence of Propositions 3.1(ii) and 3.5. �

3.2. Proof of Theorem 2.4

The equivalence between (ii) and (iii) follows from Propositions 3.2 and 3.5. Remark that Proposition 3.2 is
state for x ∈ R

n while Theorem 2.4 (ii) and (iii) is state for x ∈ K. Nevertheless, these equations are trivially
satisfied for x ∈ R

n\K (since u = 1 in R
n\K).

We now prove the equivalence between (i) and (ii). The fact that the value function ϑ satisfies (2.8) follows
from Corollary 3.4 and 3.7 and from the definition of ϑ.

Conversely, let us assume that u satisfies (2.8) and let us prove that u = ϑ. Let x ∈ K and t > 0. The proof
is splitted in two steps:
Step 1: u(t, x) ≥ ϑ(t, x).

Indeed, using Proposition 3.2, we get that there exists yx ∈ S[0,t](x) such that:

u(t − τ, yx(τ)) ≤ u(t, x) ∀τ ∈ [0, t]. (3.22)

Two cases may occur. In the first case, yx does not belong to SK
[0,t](x) which means that there exists τ ∈ [0, t]

with yx(τ) �∈ K. In this case, we have

u(t − τ, yx(τ)) = 1 ≤ u(t, x).

Since u, ϑ are bounded from above by 1, we conclude that u(t, x) = 1 and then

u(t, x) ≥ ϑ(t, x).

On the other hand, if yx belongs to SK
[0,t](x) then by taking the limit τ → t− in (3.22) and using the fact that

u is lsc, we get
ϑ(t, x) ≤ ϕ(yx(t)) ≤ lim inf

τ→t−
u(t − τ, yx(τ)) ≤ u(t, x).

Step 2: ϑ(t, x) ≥ u(t, x).
It suffices to consider the case SK

[0,t](x) �= ∅ (otherwise ϑ(t, x) = 1 ≥ u(t, x)). In this case, by Proposition 3.1,
there exists an admissible trajectory yx ∈ SK

[0,t](x) such that

ϕ(yx(t)) = ϑ(0, yx(t)) = ϑ(t, x).

On the other hand, by Proposition 3.5, we also have that

u(t, x) ≤ u(0, yx(t)) = ϕ(yx(t)).

This implies that ϑ(t, x) ≥ u(t, x) and ends the proof of the theorem. �
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4. Some particular situations

The goal of this section is to show that Theorem 2.4 leads to a characterisation of the value function in term
of Hamilton-Jacobi equations when a qualification condition is satisfied and F is continuous. In particular, we
can recover the results of Soner [21] (see also [19]) when inward qualification condition holds (see Sect. 4.1) and
also the results of Frankowska et al. [17,18] in the case when outward qualification condition is satisfied (see
Sect. 4.2).

In this section, we limit our attention to state constraint sets K expressible as

K =
r⋂

j=1

{x, hj(x) ≤ 0},
◦
K=

r⋂
j=1

{x, hj(x) < 0} (4.23)

for a finite family of C1,1 functions6 {hj : R
n → R}j=1,...,r. We also denote by

I(x) = {j ∈ {1, . . . , r}, hj(x) = 0}

the active set of index values at a point x ∈ ∂K. We assume throughout this section that
◦
K �= ∅.

4.1. Inward pointing condition

In [21], Soner introduced the “inward-pointing” constraint qualification:

∃β > 0, ∀x ∈ ∂K, min
p∈F (x)

p · ∇xhj(x) < −β ∀j ∈ I(x). (4.24)

Under this “controllability” hypothesis, Soner proved that the value function is continuous and is the unique
solution of a constrained HJB equation in an appropriate sense. In smooth cases (with ϕ Lipschitz continuous),
this viscosity notion can be interpreted as solution of a Neumann boundary equation (see the paper of Capuzzo-
Dolcetta and Lions [13]). Generalizations of this condition to the case of a state constraints set K with nonsmooth
boundary, were introduced by Ishii and Koike [19]. They also modified the notion of solutions, by modifying
the Hamiltonian.

Condition (4.24) is a strengthened viability condition [1]. Geometrically, (4.24) means that from each point

x ∈ ∂K a trajectory enters into
◦
K, while the viability condition guarantees that a solution stays in K forever.

Moreover, under condition (4.24), each trajectory starting at x on the boundary can be approximated by a
sequence of trajectories lying in the interior of K. More precisely, we have the following lemma.

Lemma 4.1. Assume that F satisfies (H2)–(H5) and K is defined as in (4.23). Let yx ∈ SK
[0,T ](x) for (T, x) ∈

R
+ × K. Let (ti, xi) ∈ R

+
∗ ×

◦
K be such that (ti, xi) → (0, x). If (4.24) holds true, then there exists a sequence

of trajectories yi such that

ẏi(t) ∈ F (yi(t)) for t ∈ [ti, T ], yi(ti) = xi, yi(t) ∈
◦
K on [ti, T ]

and
‖yi − yx‖L∞([ti,T ];Rn) → 0.

The proof of this lemma can be obtained by similar arguments as in [18], Lemma 4.1.

Theorem 4.2 (characterization of the value function under inward-pointing constraints). Let K be given
by (4.23). Assume that ϕ is a continuous function on K. Assume also that (H1)–(H5) and (4.24) are satisfied.

6C1,1 being the class of C1-functions with Lipschitz continuous gradients.
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Let u : R
n × R �→ [−M0, M0] ∪ {1} be a continuous function such that u = 1 on Kc. Then, the following

assertions are equivalent:
(i) u = ϑ.

(ii)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(0, x) = ϕ(x),

∀t > 0, x ∈ K, supp∈F (x) −D↑u(t, x)(−1, p) ≥ 0,

∀t ≥ 0, x ∈
◦
K, supp∈F (x) D↑u(t, x)(1,−p) ≤ 0.

(iii)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(0, x) = ϕ(x),

∂tu(t, x) + H(x, Dxu(t, x)) ≥ 0 for t > 0, x ∈ K,

∂tu(t, x) + H(x, Dxu(t, x)) = 0 for t > 0, x ∈
◦
K .

Proof. This theorem is already proved in [22]. It can be also deduced from Theorem 2.4. Indeed, under inward
qualification constraint (4.24), when ϕ is continuous on K, the value function is also continuous on K. Moreover,
for every continuous function u : R

+ × R
n → R, we have:⎡

⎣∀t ≥ 0, ∀x ∈
◦
K, sup

y∈S
◦K,−(x)

Dy
↑u(t, x) ≤ 0

⎤
⎦ =⇒

[
∀t ≥ 0, ∀x ∈ K, sup

y∈SK,−(x)

Dy
↑u(t, x) ≤ 0

]
, (4.25)

which means that the information about the behavior of u along trajectories arriving at the boundary of K can
be deduced from the behavior along trajectories lying in the interior of K. The proof of this claim is mainly
based on Lemma 4.1.

Assume that the left hand side of (4.25) is satisfied. Let (t, x) be in R
+ × ∂K. Let yx be a trajectory

in SK,−(x). Then there exists ν > 0 such that yx([−ν, 0]) ⊂ K and yx(0) = x.

If yx([−ν, 0[) ⊂
◦
K, then by using Proposition 3.5, we deduce for every h ∈ ]0, ν] and every τ ∈ ]0, h]:

u(t + h, yx(−h)) ≤ u(t + τ, yx(−τ)). (4.26)

By sending τ to 0, and using the continuity of u, we get:

u(t + h, yx(−h)) ≤ u(t, x) ∀h ∈ ]0, ν],

which implies that Dyx

↑ u(t, x) ≤ 0.
In the general situation, for h ∈ [0, ν], we use Lemma 4.1 to approach yx on [−h, 0] by a sequence of

F -trajectories (yi) with yi lying in
◦
K. More precisely, we consider (hi, zi) ∈ R

+
∗ ×

◦
K such that (hi, zi) →

(h, yx(−h)). By Lemma 4.1, there exists a sequence {yi : [−hi, 0] → R
n} such that

yi(−hi) = zi, yi ⊂
◦
K on [−hi, 0] and ‖yi − yx‖L∞([−hi,0];Rn) → 0.

Using (4.26) (applied to yi ∈ S
◦
K,−(yi(0))), we deduce that

u(t + hi, zi) ≤ u(t, yi(0)).

Sending, i → ∞, we deduce that
u(t + h, yx(−h)) ≤ u(t, x),

for every h ∈ [0, ν], which implies that Dyx

↑ u(t, x) ≤ 0. �
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Remark 4.3. It is clear that assertion (4.25) amounts to saying that, under the inward condition (4.24), if u

is suboptimal along any trajectory yx lying in the interior
◦
K then it is also suboptimal along any trajectory

remaining in the closed set K.

4.2. Outward pointing condition

In [17,18], Frankowska et al. introduced another condition to study the characterization of the value function:

∀x ∈ ∂K, max
p∈F (x)

p · ∇hj(x) > 0 ∀j ∈ I(x). (4.27)

This condition said “outward pointing qualification” can be seen as a reverse to Soner’s assumption (4.24).
It means that from each boundary point x ∈ K, a trajectory solution of (2.3) leaves immediately K. It
means also that each point of the boundary can be hit by a trajectory coming from the interior of K. Under
assumption (4.27), a similar property to Lemma 4.1 is the following (see [18], Lem. 4.1):

Lemma 4.4. Assume (H2)–(H5) and (4.27) hold true. Let T > 0, x ∈ K and yx ∈ SK,−(x) such that:

ẏx(t) ∈ F (yx(t)) for t ∈ [−T, 0].

Let (ti, xi) ∈ R
+∗ ×

◦
K be a sequence satisfying (ti, xi) → (0, x), when i → +∞. Then there exists a sequence of

trajectories yi such that

ẏi(t) ∈ F (yi(t)) for t ∈ [−T,−ti], yi(−ti) = xi, yi(t) ∈
◦
K on [−T,−ti]

and

‖yi − yx‖L∞([−T,−ti];Rn) → 0.

Here, under the outward condition (4.27), any trajectory arriving to a boundary point x ∈ ∂K can be
approximated by a sequence of trajectories lying inside K, while this approximation is claimed, under the
inward condition, for a trajectory starting at the boundary.

Under assumption (4.27), the value function is not necessarily continuous, but is still the unique solution of
HJB equation in a lsc sense in lines of [10,16].

Theorem 4.5 (characterization of the value function under outward-pointing constraints). Let u : R
n × R �→

[−M0, M0] ∪ {1} be a lsc function such that u = 1 on Kc. We assume that (H1)–(H5) and (4.27) hold. Then
the following assertions are equivalent:

(i) u = ϑ.

(ii)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ∈
◦
K, lim inf

s→0+,
z→x

u(s, z) = u(0, x) = ϕ(x),

∀t > 0, ∀x ∈ K, lim inf
s→t+,
◦
K�z→x

u(s, z) = u(t, x),

∀t > 0, x ∈ K, sup
p∈F (x)

−D↑u(t, x)(−1, p) ≥ 0,

∀t ≥ 0, x ∈
◦
K, sup

p∈F (x)

D↑u(t, x)(1,−p) ≤ 0.
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(iii)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ∈
◦
K, lim inf

s→0+, z→x
u(s, z) = ϕ(x),

∀t > 0, ∀x ∈ K, lim inf
s→t+,
◦
K�z→x

u(s, z) = u(t, x),

∂tu(t, x) + H(x, Dxu(t, x)) = 0 for t > 0, x ∈
◦
K,

∂tu(t, x) + H(x, Dxu(t, x)) ≥ 0 for t > 0, x ∈ ∂K.

Proof. The equivalence between (ii) and (iii) follows from Propositions 3.2 and 3.5. The fact that (i) implies
(ii) follows from Theorem 2.4 and the fact that, under the outward-pointing constraint, the value function ϑ
satisfies the second line of (ii) [18].

For the implication (ii) ⇒ (i), using Theorem 2.4 and Proposition 3.5, we just have to prove that

∀t ≥ 0, x ∈
◦
K, sup

y∈S−,
◦
K(x)

Dy
↑u(t, x) ≤ 0 (4.28)

implies that

∀t ≥ 0, x ∈ K, sup
y∈S−,K(x)

Dy
↑u(t, x) ≤ 0. (4.29)

Let t ≥ 0, x ∈ K and y ∈ SK,−(x)\S
◦
K,−(x).

Consider (ti, xi) ∈ R
+
∗ ×

◦
K such that:

(ti, xi) → (0, x) and u(ti, xi) → u(t, x) when i → +∞.

By Lemma 4.4, there exists a sequence {yi : [−τ,−ti] → R
n} such that

yi(−ti) = xi, yi ∈
◦
K on [−τ,−ti] and ‖yi − yx‖L∞([−τ,−ti];Rn) → 0.

We define ỹi(τ) = yi(τ + ti) ∈ S
◦
K,−
[−τ+ti,0]

(xi). By (4.28), we deduce that

lim inf
h→0

u(t + h, ỹi(−h)) − u(t, xi)
h

≤ 0.

Sending i → ∞, using the fact that u is lsc and that u(t, xi) → u(t, x), we get that

lim inf
h→0

u(t + h, ỹx(−h)) − u(t, x)
h

≤ 0

which gives (4.29). �

5. Relaxation of state constraints

Consider (Kε)ε>0 a sequence of subsets of R
n such that

(H6)

⎧⎪⎪⎨
⎪⎪⎩

(i) for every ε > 0, Kε is closed and K ⊂ Kε,

(ii) Kη ⊂
◦
Kε for every ε > 0 and η ∈ (0, ε),

(iii) ∀x ∈ K, lim
ε→0

d(x, Rn\Kε) = 0,
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where d is a distance function. For instance, we may simply consider Kε := {x ∈ R
n, d(x, K) ≤ ε}. In all the

sequel, for every t ≥ 0, we shall say that yx is a Kε-admissible trajectory on [0, t] when yx belongs to SKε

[0,t](x).
Our aim in this section is to prove Theorem 2.8, that is, to prove the pointwise convergence of uε(t, x) towards

ϑ(t, x), uε : R
+ × R

n �→ [−M0, M0] ∪ {1} being a solution of (2.10).
Notice that (2.10) admits (at least) one solution uε. Indeed, the value function associated to a control

problem (2.5) with state constraints in Kε (instead of K) is a solution of (2.10). However, this equation may
admit several solutions. The main feature of Theorem 2.8 is that, by enlarging the set K and considering (2.10),
we neither have to deal with difficult boundary constraints, nor we have to require any constraint qualification
assumption on ∂Kε. We just take any solution uε of (2.10) on Kε and then by sending ε to 0, this solution uε will
converge to the value function ϑ (which is the unique solution of the HJB equation (2.9a)–(2.9b) and satisfying
the boundary conditions (2.9c)–(2.9e)).

Proof of Theorem 2.8. To prove the result we proceed in several steps.

Step 1. For t > 0 and x ∈ K given, we claim that lim inf
ε→0

uε(t, x) ≥ ϑ(t, x).

Let us set 
 := lim infε→0 uε(t, x), and assume that 
 < 1 (otherwise the result is immediate). We consider a
subsequence εk > 0 such that εk → 0 (with εk ≤ 1) and (for k large enough)

1 > 
 +
1
k
≥ uεk

(t, x). (5.30)

For x ∈ R
n\Kεk

and t > 0, we have uεk
≡ 1 locally around (t, x) and thus (2.10a) is also satisfied at the point

(t, x) for any t > 0 and x ∈ R
n.

Therefore we can apply Proposition 3.2 (using that (iii) ⇒ (ii)) and obtain that there exists yεk
x ∈ S[0,t](x)

such that ∀τ ∈ [0, t], uεk
(t − τ, yεk

x (τ)) ≤ uεk
(t, x). We then deduce that


 +
1
k
≥ uεk

(t, x) ≥ ϕ(yεk
x (t)).

By Remark 2.2, we can extract from yεk
x a convergent subsequence towards some trajectory yx ∈ S[0,t](x). At

the limit, when k tends to +∞, and taking into account that ϕ is lsc, we obtain


 ≥ ϕ(yx(t)).

On the other hand, using that uεk
≡ 1 on R

n\Kεk
and the fact that uεk

(t, x) < 1, we deduce that yεk
x is

Kεk
-admissible for every k > 0. We then obtain that yx ∈ SK

[0,t](x) by using assumption (H6)(iii) and the fact

that yx ∈ S
Kεk

[0,t] (x), ∀k > 0. This proves that

ϑ(t, x) ≤ ϕ(yx(t)) ≤ 


and concludes the proof of Step 1.

Step 2. We now claim that ϑ(t, x) ≥ uε(t, x) for all t > 0, x ∈ K and ε > 0. To show this, let us consider Vε,
the value function of the optimal control problem with the relaxed constraint set Kε instead of K:

Vε(t, x) :=

{
inf
{

ϕ(yx(t)), yx ∈ SKε

[0,t](x)
}

, if SKε

[0,t](x) �= ∅,
1 otherwise.

(5.31)

By definition, for all ε > 0, we have

Vε ≤ ϑ. (5.32)

We have also the following lemma which proof is postponed.
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Lemma 5.1. Let uε satisfy (2.10b), (2.10c) and (2.10d). For any η ∈ (0, ε), we have

uε(t, x) ≤ Vη(t, x).

Combining Lemma 5.1 and (5.32) we obtain that ϑ(t, x) ≥ V ε
2
(t, x) ≥ uε(t, x).

Step 3. Conclusion: Combining Step 1 and Step 2, we get that

ϑ(t, x) ≥ lim sup
ε→0

uε(t, x) ≥ lim inf
ε→0

uε(t, x) ≥ ϑ(t, x).

This ends the proof of Theorem 2.8. �

Proof of Lemma 5.1. Let η be in (0, ε). Using that uε satisfies Proposition 3.5(iv) with Ω :=
◦
Kε, we deduce by

the same proposition that uε is increasing along
◦
Kε-admissible trajectories, and in particular,

∀t ≥ 0, ∀x ∈
◦
Kε, ∀yx ∈ S

◦
Kε

[0,t], u(t, x) ≤ ϕ(yx(t)). (5.33)

Now, for any Kη-admissible trajectory denoted yη
x(t), and since Kη ⊂

◦
Kε (by (H6)(iii)), we can apply (5.33)

and obtain that uε(t, x) ≤ ϕ(yη
x(t)). Hence uε(t, x) ≤ Vη(t, x). �

As claimed in Proposition 2.9, Equation (2.10) is equivalent to an HJB equation with Dirichlet boundary
conditions. Let us prove this assertion.

Proof of Proposition 2.9. The equivalence of (i) and (ii), for the initial condition aspect as well as for the
bilateral solution aspect in the interior of Kε is easily obtained from Definitions 2.6 and 2.10.

We also obtain directly from (2.10a) that Definition 2.10(ii) holds, which concludes the proof of (i) ⇒ (ii).
Conversely, there remains to show that if we assume (ii) then (2.10a) holds for t > 0 and x ∈ ∂Kε. In the

case when u(t, x) = 1, since u is lsc and takes its values in [−M0, M0]∪ {1}, we know that u ≡ 1 locally around
(t, x) and thus (2.10a) is also satisfied at (t, x). Otherwise, u(t, x) < 1, and thus Definition 2.10(ii) implies that

pt + max
p∈F (x)

(−p · px) ≥ 0

for any (pt, px) ∈ D−u(t, x), which gives the desired result. �
We now give a result that can be useful for the approximation of backward reachable sets (see below). Let

dH(A, B) be the Hausdorff distance between two compact sets A, B of R
n 7. Let λ < 1 and

D(λ) := {x, ϕ(x) ≤ λ}.

For t ≥ 0 given, we define the set At(λ) by:

At(λ) := {x ∈ R
n, ϑ(t, x) ≤ λ}

and, for a given uε solution of (2.10), the set Aε
t (λ) by:

Aε
t (λ) := {x ∈ R

n, uε(t, x) ≤ λ}.

We have At(λ) ⊂ Aε
t (λ) since uε ≤ ϑ. Hence At(λ) ⊂ ∩ε>0A

ε
t (λ). The following shows that the reverse inclusion

is true.

7dH(A, B) := max(δ(A, B), δ(B, A)) where δ(A, B) := maxx∈A d(x, B).
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Proposition 5.2. We assume (H1)–(H6). We have:
(i) ∩ε>0A

ε
t (λ) = At(λ).

(ii) If D(λ) is a compact set, then limε→0 dH(Aε
t (λ), At(λ)) = 0.

Proof. (i) is a simple consequence of Theorem 2.8.
We now prove (ii). For a given λ, let us simply denote At and Aε

t for At(λ) and Aε
t (λ). We first notice that

At ⊂ Aε
t . Hence there remains to control

δ(Aε
t , At) := max

x∈Aε
t

d(x, At).

Aε
t is a closed set, and there exists xε ∈ Aε

t such that maxx∈Aε
t
(x, At) := d(xε, At). We consider a subsequence

εn → 0 such that (d(xεn , At)). Since D(λ) and F are bounded, Aε
t is also a bounded set which contains xεn

(for εn ≤ 1). Then, we can extract from xεn a converging subsequence (still denoted xεn) to some limit x.
Since xεn ∈ Aε

t for all εn ≤ ε, passing to the limit we obtain x ∈ Aε
t for any given ε > 0. By Theorem 2.8, we

deduce that x ∈ At, and that (d(xεn , At)) → 0. This finally proves that all the sequence (d(xε, At)) converges
to 0 as ε → 0. �
Remark 5.3. A direct application is the following. Let C be a given target, that is a non empty compact set.
We choose ϕ(x) := dC(x), that is, the signed distance function to the set C, and set λ := 0. Then it is easy to
see that At(0) corresponds to the backward reachable set at time t, that is,

At(0) =
{
x ∈ R

n, ∃yx ∈ SK
[0,t](x), such that yx(t) ∈ C

}
.

Hence Proposition 5.2 gives an approximation result for the backward reachable set At(0) by the sets Aε
t (0)

associated to any uε solution of (2.10).

6. A penalization approach for state constraints problems

In the previous sections, we were interested by various characterization of the discontinuous value function
ϑ(t, x). Now, we are interested by an approximation of ϑ by continuous functions. This approach is also closely
related to our recent work [12] used for the characterization of reachable sets.

As before, the problem is to deal with general state constraints without using any controllability assumption.
We recall that by (H1) ϕ is a lsc function and −M0 ≤ ϕ(x) ≤ M0 on K.

Let us consider a sequence of Lipschitz continuous functions gε : R
n → R satisfying

(i) gε(x) := −M0 ∀x ∈ K, (6.34a)
(ii) gε(x) ≤ 1 ∀x ∈ R

n, and ∀δ > 0, lim
ε→0

inf
{z: d(z,K)≥δ}

gε(z) = 1. (6.34b)

For instance, gε can be defined as in (2.14). We consider ϑε defined as follows:

ϑε(t, x) := inf
yx∈S[0,t](x)

max
(

ϕ(yx(t)), max
θ∈[0,t]

gε(yx(θ))
)

. (6.35)

Here the state variable is free, but the penalized cost function takes value 1 whenever the trajectory exits
the set K. Furthermore, by using similar arguments as in Barron and Jensen [10] and Barron [9] (see also
Bokanowski et al. [12]), we can easily prove that ϑε is the unique solution of an HJB equation:

Proposition 6.1. Under assumptions (H1)–(H5), for every ε > 0, the function ϑε is the unique lsc viscosity
solution of the following inequation:

min(∂tϑε + H(x,∇ϑε), ϑε − gε(x)) = 0, t > 0, x ∈ R
n, (6.36a)

ϑε(0, x) = max(ϕ(x), gε(x)), x ∈ R
n. (6.36b)
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Now, the proof of Theorem 2.12 becomes very clear. It suffices to prove that the value function ϑε converges
pointwisely to ϑ. This characterization is very useful in order to compute numerically an approximation of ϑ.

Proof of Theorem 2.12. First let us remark that

ϑ(t, x) = inf
yx∈S[0,t](x)

max
(

ϕ(yx(t)), max
θ∈[0,t]

g0(yx(θ))
)

,

where g0(x) = M0 for x ∈ K and 1 elsewhere. Thus for every (t, x) ∈ R
+ × R

n, we have

ϑε(t, x) ≤ ϑ(t, x) ∀ε > 0.

Let (t, x) be given and let

δ := inf
yx∈S[0,t](x)

max
θ∈[0,t]

d(yx(θ),K).

First we suppose that δ > 0. Then for any trajectory y = yx ∈ S[0,t](x) there exists some θy ∈ [0, t] such that
d(yx(θy),K) ≥ δ. Hence ϑ(t, x) = 1 and ϑε(t, x) ≥ infy∈S[0,t](x) gε(y(θy)), and by (6.34), we get:

ϑε(t, x) ≥ lim
ε→0

inf
{z: d(z,K)≥δ}

gε(z) = 1.

We conclude that limε→0 ϑε(t, x) = 1 = ϑ(t, x).
Now, we consider the case when δ = 0. Assume that there exists some η > 0 such that

lim inf
ε→0

ϑε(t, x) ≤ ϑ(t, x) − η.

Therefore, there exists a subsequence εk > 0 for k ≥ 1, and a subsequence (yk
x)k ⊂ S[0,t](x) such that

max
(

ϕ(yk
x(t)), max

θ∈[0,t]
gε(yk

x(θ))
)

≤ ϑ(t, x) − η

2
· (6.37)

In particular,

max
θ∈[0,t]

gε(yk
x(θ)) ≤ ϑ(t, x) − η

2
≤ 1 − η

2
· (6.38)

Taking into account assumptions (H1)–(H5), we can extract from yk
x a convergent subsequence (in the L∞

norm) to some limit trajectory y ∈ S[0,t](x). Now, if there exists θ ∈ [0, t] such that yx(θ) does not belong
to K. Then we would obtain 1 ≤ 1 − η

2 . Hence the limit trajectory yx is admissible: yx ∈ SK
[0,t](x). Going back

to (6.37), and passing to the limit when ε → 0, we obtain

max
(

ϕ(yx(t)), −M0

)
≤ ϑ(t, x) − η

2
· (6.39)

By definition of ϕ, this implies that

ϕ(yx(t)) ≤ ϑ(t, x) − η

2
,

which is a contradiction to the definition of the value function ϕ. �
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