
ESAIM: COCV 17 (2011) 909–930 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2010029 www.esaim-cocv.org

VARIATIONAL APPROXIMATION FOR DETECTING
POINT-LIKE TARGET PROBLEMS ∗
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Abstract. The aim of this paper is to provide a rigorous variational formulation for the detection of
points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give
the points we want to detect. Then we define an approximating sequence of functionals for which we
prove the Γ-convergence to the initial one.
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1. Introduction

The issue of detecting fine structures, like points or curves in two or three dimensional biological images,
is a crucial task in image processing. In particular a point may represent a viral particle whose visibility is
compromised by the presence of other structures like cell membranes or some noise. Therefore one of the main
goals is to detect spots that biologists wish to count. This task is hard because of the presence of other singular
structures.

In some biological images the image intensity is a function that takes the value 1 on points or other structures
like sets with Hausdorff dimension 0 ≤ α < 1, and it is close to zero outside. In image processing these
concentration sets are called discontinuities without jump, meaning that there is no jump across the set and
therefore the gradient of the image is zero.

In the literature there are few variational methods dealing with this problem. In this direction an interesting
approach has been proposed in [3]. In that paper the authors consider this kind of pathology as a k-codimension
object, meaning that they should be regarded as a singularity of a map U : R

k+m → R
k, with k ≥ 2 and m ≥ 0

(see [6] for a complete survey on this subject). In particular the detecting point case corresponds to the case
k = 2 and m = 0.

This point of view makes possible a variational approach based on the theory of Ginzburg-Landau systems. In
their work the isolated points in 2-D images are regarded as the topological singularities of a map U : R

2 → S
1,

where S
1 is the unit sphere of R

2. Starting from the initial image I : Ω ⊂ R
2 → R, this strategy makes crucial
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the construction of an initial vector field U0 : R
2 → S

1 with a topological singularity of degree one. Nevertheless
how to obtain such a vector field in a rigorous way, seems to be still unclear.

Therefore one of the main purposes here is to find a most natural variational framework, in which a rigorous
definition of discontinuity without jump can be given. In our model the image I is a Radon measure. It is
crucial for detecting points that this Radon measure would be able of charging points. The preliminary step is
finding a space whose elements are able of producing this kind of measures. This space is given by DMp(Ω): the
space of Lp-vector fields whose distributional divergence is a Radon measure, with 1 < p < 2 (see Sect. 2 below).
The restriction on p is due to the fact that when p ≥ 2 the distributional divergence DivU of U cannot be a
measure concentrated on points (see Sect. 3.1 below). Then we have to construct, from the original image I, a
data vector U0 ∈ DMp(Ω). Clearly there are, at least in principle, many ways to do this. The one we propose
here seems to be the most natural. We consider the classical elliptic problem with measure data I:

{
−Δu0 = I on Ω
u0 = 0 on ∂Ω.

Then by setting U0 = −∇u0 we have U0 ∈ DMp(Ω) with DivU0 = I. However the support of the measure
DivU0 is too large and could contain several structures like curves or fractals, while the singularities, we are
interested in, are contained in the atomic part of the measure DivU0 and therefore we have to isolate them. To
do this the notion of p-capacity of a set plays a key role. Indeed when p < 2 the p-capacity of a point in Ω is
zero and one can say, in this sense, that it is a discontinuity without jump. Besides every Radon measure can
be decomposed in two mutually singular measures: the first one is absolutely continuous with respect to the
p-capacity and the second one singular with respect to the p-capacity, that is a measure concentrated on sets
with zero p-capacity (see [14]).

As it is known in dimension two, sets with zero p-capacity, and hence discontinuities without jump, can be
isolated points, countable set of points or fractals with Hausdorff dimension 0 ≤ α < 1 (see Sect. 2.3 for the
definition of p-capacity and related properties).

Our goal here is keeping nothing else but points in the image. The achievement of such a purpose makes neces-
sary the minimization of a suitable energy that must remove all the discontinuities which are not discontinuities
without jump, and remove all the discontinuities without jump which are not isolated points.

From one hand we have to force the concentration set of the divergence measure of U to contain only the
points we want to detect, and on the other hand we have to regularise the initial data U0 outside points of
singularities. To this end we introduce the auxiliary space SDMp(Ω) of vector fields belonging to DMp(Ω)
whose divergence measure has no absolutely continuous part with respect to the p-capacity. Then, by taking
into account that the initial vector field is a gradient of a Sobolev function, our goal is to minimize the following
energy:

F(u) =
∫

Ω

|Δu|2dx+ λ

∫
Ω

|∇u− U0|pdx+ μH0(supp(divs∇u)),

where u ∈ W 1,p
0 (Ω) with ∇u ∈ SDMp(Ω), 1 < p < 2 and λ, μ are positive weights. The gradient of a minimizer

of the energy F is the vector field we are looking for, that is a vector field whose divergence measure can be
decomposed in an absolutely continuous term (with respect to the Lebesgue’s measure) plus an atomic measure
concentrated on the points we want to isolate in the image.

Even if a pointwise characterization of discontinuity without jump sets is not available, thanks to our definition
the singular set of points can be linked to the vector field ∇u, in spirit of the classical SBV formulation of the
Mumford-Shah’s functional (we refer to [1] for a complete survey on the Mumford Shah’s functional).

For computational purposes, the next task is to provide an approximation in the sense of Γ-convergence
introduced in [16,17]. Our approach is close in the spirit to the one used to approximate the Mumford Shah’s
functional by a family of depending curvature functionals as in [9]. Indeed, as in their work (see also [8]),
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we replace the atomic measure H0 by the term

Gε(D) =
1
4π

∫
∂D

(
1
ε

+ εκ2

)
dH1,

where D is a regular set, κ is the curvature of its boundary, and the constant 1
4π is a normalization factor.

Roughly speaking the minima of these functionals are achieved on the union of balls of small radius, so that
when ε→ 0 the sequence Gε shrinks to the atomic measure H0.

This leads to an intermediate approximation given by

Fε(u,D) =
∫

Ω

(1 − χD)|Δu|2dx+ λ

∫
Ω

|∇u− U0|pdx+ μ
1
4π

∫
∂D

(
1
ε

+ εκ2

)
dH1. (1.1)

This strategy permits to work with the perimeter measure H1�∂D, that can be approximated, according to the
Modica-Mortola’s approach (see [21,22]), by the measure:

με(w,∇w) =

(
ε|∇w|2 +

W (w)
ε

)
dx,

where W (w) = w2(1 − w)2 is a double well function.
Besides by using Sard’s Theorem and coarea formula (see also [4] for a similar approach) one can formally

replace the integral on ∂D by an integral computed over the level sets of w, whose curvature κ becomes div ∇w
|∇w|

and the integral is computed over the level sets of w. So that one can formally write the complete approximating
sequence:

Gε(u,w) =
∫

Ω

w2|Δu|2dx+ μ
1

8πC

∫
Ω\{|∇w=0|}

(
1
βε

+ βε

(
div

(
∇w
|∇w|

))2)(
ε|∇w|2 +

1
ε
W (w)

)
dx

+λ

∫
Ω

|∇u− U0|pdx+
1
γε

∫
Ω

(1 − w)2dx,

where, as usual, C =
∫ 1

0

√
W (t)dt, βε and γε are infinitesimal as ε→ 0. The last integral is a penalization term

that forces w to tend to 1 as ε→ 0.
Thus the main goal of this work is to show that the family of energies Gε Γ-converges to the functional F

when the parameters are related in a suitable way.
As in [9] we deal with a suitable convergence of functions involving the Hausdorff convergence of a sub-level

sets. This strategy requires a careful statement of the Γ-convergence definitions and results, in order to have
that sequences asymptotically minimizing Gε converge to a minimum of F .

Although this approach is inspired by some ideas contained in [8,9], we point out that in our case the
regularization term involves a second order differential operator, due to the fact that our goal is to detect points
and not segment curves. This deep difference requires a non trivial adaptation of the arguments used in those
papers.

The paper is organized as follows. Section 2 is devoted to notations, preliminary definitions and results. In
Section 3 we illustrate the new variational model and we present the functional we deal with. Sections 4 and 5
are devoted to the Γ-convergence results. Finally in the last section we conclude the paper by comparing this
approach with the celebrated conjecture by De Giorgi, concerning the approximation of the curvature depending
functionals.

We do not give here experimental result illustrating our approach. We refer the reader for that to [19].
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2. Definition and main properties

2.1. Notation

In all the paper Ω ⊂ R
2 is an open bounded set with Lipschitz boundary. The Euclidean norm will be

denoted by | · |, while the symbol ‖ · ‖ indicates the norm of some functional spaces. The brackets 〈, 〉 denotes
the duality product in some distributional spaces. Ld or dx is the d-dimensional Lebesgue measure and Hk is
the k-dimensional Hausdorff measure. Bρ(x0) is the ball centered at x0 with radius ρ. We say that a set D ⊂ Ω
is a regular set if it can be written as {F < 0} with F ∈ C∞

0 (Ω). In the following we will denote by R(Ω) the
family of all regular sets in Ω. Finally we will use the symbol ⇀ for denoting a weak convergence.

2.2. Distributional divergence and classical spaces

In this section we recall the definition of the distributional space Lp,q(div; Ω) and DMp(Ω), 1 ≤ p, q ≤ +∞,
(see [2,11]).

Definition 2.1. We say that U ∈ Lp,q(div; Ω) if U ∈ Lp(Ω; R2) and if its distributional divergence DivU =
divU ∈ Lq(Ω). If p = q the space Lp,q(div; Ω) will be denoted by Lp(div; Ω).

We say that a function u ∈ W 1,p(Ω) belongs to W 1,p,q(div; Ω) if ∇u ∈ Lp,q(div; Ω). We say that a function
u ∈W 1,p

0 (Ω) belongs to W 1,p,q
0 (div; Ω) if ∇u ∈ Lp,q(div; Ω).

Definition 2.2. For U ∈ Lp(Ω; R2), 1 ≤ p ≤ +∞, set

|DivU |(Ω) := sup{〈U,∇ϕ〉 : ϕ ∈ C∞
0 (Ω), |ϕ| ≤ 1}.

We say that U is an Lp-divergence measure field, i.e. U ∈ DMp(Ω), if

‖U‖DMp(Ω) := ‖U‖Lp(Ω;R2) + |DivU |(Ω) < +∞.

Let us recall the following classical result (see [12], Prop. 3.1).

Theorem 2.1. Let {Uh}h ⊂ DMp(Ω) be such that

Uh ⇀ U in Lp(Ω; R2), as h→ +∞ for 1 ≤ p < +∞. (2.1)

Then
‖U‖Lp(Ω;R2) ≤ lim inf

h→+∞
‖Uh‖Lp(Ω;R2), |DivU |(Ω) ≤ lim inf

h→+∞
|DivUh|(Ω).

2.3. p-Capacity

The notion of p-capacity of sets will be crucial to find a convenient functional framework to deal with. If
K ⊂ R

2 is a compact set and χK denotes its characteristic function, we define:

Capp(K,Ω) = inf
{∫

Ω

|∇f |pdx, f ∈ C∞
0 (Ω), f ≥ χk

}
.

If U ⊂ Ω is an open set and K ⊂ U is a compact set, its p-capacity is given by

Capp(U,Ω) = sup
K⊂U

Capp(K,Ω).

Finally if A ⊂ U ⊂ Ω with A Borel set and U open, then

Capp(A,Ω) = inf
A⊂U⊂Ω

Capp(U,Ω).
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We recall the following result (see for instance [20], Thm. 2.27) that explains the relationship between p-capacity
and Hausdorff measures. Such a result is crucial to have geometric information on null p-capacity sets.

Theorem 2.2. Assume 1 < p < 2. If H2−p(A) <∞ then Capp(A,Ω) = 0.

Another useful tool to manage sets of zero p-capacity is provided by the following characterization.

Theorem 2.3. Let E be a compact subset of Ω. Then Capp(E,Ω) = 0 if and only if there exists a sequence
{φk}k ⊂ C∞

0 (Ω), converging to 0 strongly in W 1,p
0 (Ω), such that 0 ≤ φk ≤ 1 and φk = 1 on E for every k.

For a general survey we refer the reader to [18,20,25].

3. The variational model

In this section we set the functional framework and the functional to be minimized.
Roughly speaking in biological images the image is a function that could be very high on points or other

structures like sets with Hausdorff dimension 0 ≤ α < 1, and it is close to zero outside. From a mathematical
point of view it seems to be much more appropriate to think of the image as a Radon measure, that is I = μ ∈
(C0(Ω))∗. The next step is finding a space whose elements are able of producing this kind of discontinuities:
the space DMp(Ω), with 1 < p < 2. The restriction on p is due to the fact that when p ≥ 2 the distributional
divergence of U cannot be a measure concentrated on points. Set p ≥ 2, according to the definition, we have

〈DivU,ϕ〉 = −
∫

Ω

U · ∇ϕdx for all ϕ ∈ C∞
0 (Ω).

Since p ≥ 2 this distribution is well-defined for any test ϕ ∈ W 1,p′
0 (Ω), where p′ ≤ 2 is the dual exponent

of p. In particular DivU belongs to the dual space W−1,p(Ω) of the Sobolev space W 1,p′
0 (Ω). Then in this case,

the distributional divergence of U cannot be an atomic measure, since δ0 /∈ W−1,p(Ω). To see this, one can
consider as Ω the disk B1(0) and the function ϕ̃(x) = log(log(1 + |x|)) − log(log(2)). This function is in the
space W 1,p′

0 (Ω) for every p′ ≤ 2 and therefore it is an admissible test function, however it easy to check that
〈δ0, ϕ̃〉 = +∞.

When 1 < p < 2 we have that DivU ∈W−1,p(Ω), but in this case since p < 2, we have p′ > 2 and hence the
function ϕ̃ is no longer an admissible test function. One can check that the distribution DivU is an element of
(C0(Ω))∗ able of charging the points. Take for instance the map U(x, y) =

(
x

x2+y2 ,
y

x2+y2

)·
The next step is to transform the initial image I as the divergence measure of a suitable vector field. We

consider the elliptic problem with measure data I:{
−Δu = I on Ω
u = 0 on ∂Ω.

(3.1)

Classical results (see [24]) ensures the existence of a unique weak solution u ∈ W 1,p
0 (Ω) with p < 2. Then it

easy to see that the distributional divergence of −∇u is given by I. In particular by setting U = −∇u, we have
U ∈ DMp(Ω). According to the Radon-Nikodym decomposition of the measure DivU we have

DivU = divUdx+ divsU,

where divU ∈ L1(Ω) and divsU is a singular measure with respect to L2. For our purpose the support of the
singular measure divsU is too large. In particular the measure divsU could charge sets with Hausdorff dimension
0 ≤ α < 2. So that in order to isolate the singularities we are interested in, we need a further decomposition
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of the measure DivU. This can be done by using the capacitary decomposition of the Radon measure divsU .
It is known (see [14]) that given a Radon measure μ the following decomposition holds

μ = μa + μ0, (3.2)

where the measure μa is absolutely continuous with respect to the p-capacity and μ0 is singular with respect to
the p-capacity, that is concentrated on sets with zero p-capacity. Besides it is also known (see [14]) that every
measure which is absolutely continuous with respect to the p-capacity can be characterized as an element of
L1 +W−1,p′

, leading to the finer decomposition:

μ = f − DivG+ μ0, (3.3)

where G ∈ Lp′
(Ω; R2) with 1

p + 1
p′ = 1 and f ∈ L1(Ω).

By applying this decomposition to the measure divsU we obtain the following decomposition of the measure
DivU

DivU = divU + f − DivG+ (divsU)0, (3.4)

with G ∈ Lp′
(Ω; R2), f ∈ L1(Ω), divU ∈ L1(Ω) and (divsU)0 is a measure concentrated on a set with zero

p-capacity.
According to this decomposition and taking into account Theorem 2.3 we give the definition of discontinuity

without/with jump.

Definition 3.1. We say that a point x ∈ Ω ⊂ R
2 is a point of discontinuity without jump of U if x ∈

supp(divsU)0.

Definition 3.2. We say that a point x ∈ Ω ⊂ R
2 is a point of discontinuity with jump of U if x ∈ supp(f−DivG).

Remark 3.1. The other singularities, where there is a jump, are contained in the term f −DivG of decompo-
sition (3.4). Indeed the space W−1,p′

(Ω) contains Hausdorff measures restricted to sub-manifolds of dimension
greater than or equal to one, like for instance Hausdorff measures concentrated on regular closed curves, which
are classical examples of discontinuities with jump (we refer to [25], Sect. 4.7, for a detailed discussion on the
space W−1,p′

(Ω)). More precisely a contour of a regular set D is the jump set of the characteristic function
of D and its p-capacity is strictly positive. This is of course in agreement with Theorem 2.3. Indeed if there
were a sequence {φk}k ⊂ C∞

0 (Ω), converging to 0 strongly in W 1,p
0 (Ω), such that 0 ≤ φk ≤ 1 and φk = 1 on ∂D

for every k, it would be possible to define the sequence

φ̃k =

{
φk on D
1 on Ω \D,

which converges, in the W 1,p-norm, to the BV -function 1 − χD, which cannot be approximated by regular
functions in this norm.

3.1. The variational framework

We shall introduce an energy whose minimizers will be vector fields whose divergence measure’s singular part
will be given by nothing else but points.

Each minimizer must be an Lp vector field (with p < 2) with the following properties:

(1) It must be close to the initial data U0 which is, in general, an Lp-vector field U0 with 1 < p < 2.
(2) The absolutely continuous part with respect to the Lebesgue measure of DivU is an L2-function.
(3) The support of the measure (divsU)0 must be given by a set of points PU with H0(PU ) < +∞.
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According to these considerations it is natural to introduce the space

SDMp(Ω) := {U ∈ DMp(Ω), f − DivG = 0}, (3.5)

where f and G are given as in (3.3). So that, as a consequence, decomposition (3.4) yields for any U ∈ SDMp(Ω)

DivU = divU + (divsU)0. (3.6)

For our purposes the following result concerning the features of elements of the space SDMp(Ω) will play a
crucial role.

Proposition 3.1. Let P ⊂ Ω be a set of finite number of points. Let u ∈ W 1,p,2
0 (div; Ω \ P ), with 1 < p < 2.

Then ∇u ∈ SDMp(Ω), with (divs∇u)0 = P .

Proof. We set P = {x1, . . . , xn}. Let ρ(h) → 0 as h → +∞ be such that Bρh
(xi) ∩ Bρh

(xj) = ∅ for h large
enough and i �= j. We set Ωh =

⋃n
i=1 Bρh

(xi) and we define the following sequence {Uh} ⊂ Lp(Ω; R2).{
Uh = ∇u on Ω \ Ωh,

0 on Ωh.
(3.7)

Since Δu ∈ L2(Ω \ P ), by standard elliptic regularity we deduce that u ∈ W 2,p
loc (Ω \ P ). In particular, we

infer that u ∈ W 2,p(Ω \ Ωh). For every i = 1, . . . , n and h small enough we can find an open set Ai such that
Bρh

(xi) ⊂ Ai ⊂ Ω \⋃j �=i Bρh
(xj) and Ai does not depend on h. Let θi be a cutoff function associated to Ai

such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
θi = 1 on Bρh

(xi) for any i = 1, . . . , n,
0 ≤ θi ≤ 1 for any i = 1, . . . , n,
θi = 0 on Ω \Ai for any i = 1, . . . , n,
‖∇θh‖∞ ≤ Mi

d(∂Ai,∂Bρh
(xi))

for any i = 1, . . . , n,

(3.8)

where Mi is a suitable constant. Then, if ϕ ∈ C1
0 (Ω) with |ϕ| ≤ 1, by applying Gauss-Green’s formula we

obtain: ∫
Ω

Uh · ∇ϕdx =
∫

Ω\Ωh

∇u · ∇ϕdx = −
∫

Ω\Ωh

Δuϕdx+
∫

∂(Ω\Ωh)

∇u · νϕdH1

= −
∫

Ω\Ωh

Δuϕdx+
n∑

i=1

∫
∂(Ω\Bρh

(xi))

∇u · ν(ϕ− θiϕ(xi))dH1

+
n∑

i=1

ϕ(xi)
∫

∂(Ω\Bρh
(xi))

θi∇u · νdH1

= −
∫

Ω\Ωh

Δuϕdx+
n∑

i=1

∫
∂Bρh

(xi)

∇u · ν(ϕ− ϕ(xi))dH1

︸ ︷︷ ︸
=0

+
n∑

i=1

ϕ(xi)

{∫
Ai\Bρh

(xi)

Δuθidx+
∫

Ai\Bρh
(xi)

∇u∇θidx

}
(3.9)

where in the last equality we have applied again the Gauss-Green’s formula and the definition of θi.
Now for every i we have that {∂Bρh

(xi)} converges in the Hausdorff metric to the singleton {xi}. Then,
since the support of the function ψ = ϕ− ϕ(xi) is contained in Ω \ {xi}, we have that suppψ ∩ ∂{Bh(xi)} = ∅
for h large enough, by standard properties of the Hausdorff convergence. Therefore the third term in (3.9)
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is equal to 0. Moreover for h large enough we can find an open regular set A, that does not depend on h, such
that u ∈ W 2,p(Ω \A). Therefore, from (3.9) it follows that

|DivUh|(Ω) ≤ sup
0≤ϕ≤1

∫
Ω\Ωh

|∇u · ∇ϕ|dx ≤ (n+ 1)C1(Ω)‖Δu‖L2(Ω\P )

+ ‖∇u‖Lp(Ω;R2)

n∑
i=1

Mi

d(∂Ai, ∂Bρh
(xi))

:= C(n,Ω),

for h large enough. Since Uh ⇀ ∇u in Lp(Ω; R2), by Theorem 2.1

|Div∇u|(Ω) ≤ lim inf
h→∞

|Div∇uh| ≤ C.

Therefore ∇u ∈ DMp(Ω). Finally we know that u ∈ W 1,p,2(div; Ω \ P ) and thus the support of the mea-
sure divs∇u is given by the set P . Since Capp(P,Ω) = 0, according to decomposition (3.4) the measure
f − DivG vanishes on sets with zero p-capacity, and we deduce f − DivG = 0, that is ∇u ∈ SDMp(Ω), with
(divs∇u)0 = P. �

3.2. The functional

According to our purpose the natural energy to deal with is the following F : SDMp(Ω) → [0,∞], 1 < p < 2,
given by

F (U) =
∫

Ω

|divU |2dx+ λ

∫
Ω

|U − U0|pdx+ μH0(supp(divsU)0).

From now on we assume without loosing generality that the weights λ and μ are equal to one.
We note that, if DivU0 �= 0 in D′(Ω), then inf F (U) > 0 on SDMp(Ω). Indeed if we had inf

SDMp(Ω)
F (U) = 0

then, it would be possible exhibiting a minimizing sequence {Un}, such that F (Un) → 0. This would imply
Un → U0 in Lp and DivUn → 0 in D′(Ω). On the other hand, the Lp-distance between Un and U0 can be
arbitrary small only if DivU0 = 0 as well, because the constraint DivU = 0 is stable under Lp-convergence.

4. Γ-convergence: The intermediate approximation

By analogy with the construction of U0 we restrict ourselves to vector fields U which are the gradient of a
function u ∈W 1,p

0 (Ω).
Thus the functional F is finite on the class of functions whose support of the measure (divs∇u)0 is given by

a finite set. Consequently it is convenient to introduce the following spaces:

ΔMp(Ω) := {u ∈W 1,p
0 (Ω), ∇u ∈ SDMp(Ω)}, (4.1)

and

ΔAMp,2(Ω) = {u ∈ ΔMp(Ω) : Δu ∈ L2(Ω), supp(divs∇u)0 = P∇u with H0(P∇u) < +∞}. (4.2)

So that the target-limit energy F : ΔAMp,2(Ω) → (0,∞) is given by

F(u) =
∫

Ω

|Δu|2dx+
∫

Ω

|∇u − U0|pdx+ H0(P∇u). (4.3)

In spirit of [9] we introduce an intermediate variational approximation of the functional F . We define a sequence
of functionals where the counting measure H0(P∇u) is replaced by a functional defined on regular sets D
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and which involves the curvature of the boundary ∂D. The approximating sequence is given by:

Fε(u,D) =
∫

Ω

(1 − χD)|Δu|2dx+
∫

Ω

|∇u− U0|pdx+
1
4π

∫
∂D

(
1
ε

+ εκ2

)
dH1

where u ∈W 1,p,2
0 (div; Ω), D is a regular set, and κ denotes the curvature of its boundary.

In order to guarantee that the measure of the sets D is small we define a new functional still denoted by
Fε(u,D) given by

Fε(u,D) =
∫

Ω

(1 − χD)|Δu|2dx+
∫

Ω

|∇u− U0|pdx+
1
4π

∫
∂D

(
1
ε

+ εκ2

)
dH1 +

1
ε
L2(D) on Y (Ω), (4.4)

where Y (Ω) = {(u,D), u ∈W 1,p,2
0 (div; Ω), D ∈ R(Ω)}. We endow the set Y (Ω) with the following convergence.

Definition 4.1. We say that a sequence {(uh, Dh)}h ⊂ Y (Ω) H-converges to u ∈ ΔAMp,2(Ω) if the following
conditions hold:

(1) L2(Dh) → 0;
(2) {∂Dh}h → P ⊂ Ω in the Hausdorff metric, where P is a finite set of points;
(3) uh → u in Lp(Ω) and P∇u ⊆ P .

As in [9] we adopt the following ad hoc definition of Γ-convergence.

Definition 4.2. We say that Fε Γ-converges to F if for every sequence of positive numbers {εh}h → 0 and for
every u ∈ ΔAMp,2(Ω) we have:

(1) for every sequence {(uh, Dh)}h ⊂ Y (Ω) H-converging to u ∈ ΔAMp,2(Ω)

lim inf
h→+∞

Fεh
(uh, Dh) ≥ F(u);

(2) there exists a sequence {(uh, Dh)}h ⊂ Y (Ω) H-converging to u such that

lim sup
h→+∞

Fεh
(uh, Dh) ≤ F(u).

We point out that with this approach, the Fundamental Theorem of the Γ-convergence cannot be applied
directly, since we do not deal with a metric space (for a complete survey on Γ-convergence we refer to [7,13]).
However it is still possible to prove that a sequence {(uh, Dh)}h asymptotically minimizing Fε(u,D) admits a
subsequence H-converging to a minimizer of F(u). Indeed we will show at the end of this section (see Thm. 4.4)
that this property can be still obtained as a consequence of the compactness property of minimizing sequences
of Fε, Γ-lim inf inequality (1) and Γ-lim sup inequality (2).

4.1. Compactness

We state and prove the following compactness result.

Theorem 4.1. Let {εh}h → 0+ be such that

Fεh
(uh, Dh) ≤M, (4.5)

then there exist a subsequence {(uhk
, Dhk

)}k ⊂ Y (Ω), a function u ∈ ΔAMp,2(Ω) and a set P ⊂ Ω of finite
number of points, such that {(uhk

, Dhk
)}k H-converges to u.
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Proof. We adapt an argument of [9]. From (4.5) we have immediately {Dh} ⊂ R(Ω) with L2(Dh) → 0. Then
we can parameterize every Ch = ∂Dh by a finite and disjoint union of Jordan curves. Let us set for every h,
Ch =

⋃m(h)
i=1 γi. Then we have according to the 2-dimensional version of Gauss-Bonnet’s Theorem and Young’s

inequality

M ≥ 1
4π

∫
∂Dh

(
1
εh

+ εhκh
2

)
dH1 ≥ 1

4π

∫
∂Dh

2κhdH1 =
1
4π

∫
⋃m(h)

i=1 γi

2κhdH1 = m(h).

Note that we have m(h) ≤M , with M ≥ 0, independent of h. Then it is possible to extract a subsequence Chk

with the number of curves in Chk
equal to some n for every k. Then we set Chk

= {γ1
hk
, . . . , γn

hk
} for any k.

From (4.5) we also have for any γ ∈ Chk
that H1(γ) ≤ 4πMεhk

and consequently max{H1(γ) : γ ∈ Chk
} → 0.

Then there exists a finite set of point P = {x1, . . . , xn} ⊂ Ω such that for any radius ρ there is an index kρ with

γi
hk

⊂ Bρ(xi) for all k > kρ and i ∈ {1, . . . , n},

so that if we set ∂Dhk
=

⋃n
i=1 γ

i
hk

⊂ ⋃n
i=1Bρ(xi), then the Hausdorff distance dH(∂Dhk

, P ) → 0 since
L2(Dhk

) → 0, as ρ→ 0.
Now we prove the compactness property for uh. First of all from the estimate

‖∇uh‖p
Lp(Ω) ≤ 2p

(
‖∇uh − U0‖p

Lp(Ω) + ‖U0‖p
Lp(Ω)

)
, (4.6)

and (4.5), we may extract a subsequence {uhk
} ⊂W 1,p

0 (Ω) weakly convergent to u ∈W 1,p
0 (Ω).

Let {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ P invading Ω \ P . We claim that it is possible to extract a
sequence of Dhk

such that Ωj ∩Dhk
= ∅; for any j and k large enough. Indeed since the distance between Ωj

and P is positive for any j there exists ηj such that Ωj ∩ (
⋃n

i Bηj (xi)) = ∅. On the other hand we know that
for every ρ we can find kρ such that ∂Dhk

=
⋃n

i=1 γ
i
hk

⊂ ⋃n
i=1 Bρ(xi), for every k ≥ kρ. Then in particular if

ρ = ηj there exists kj such that for all k ≥ kj

Ωj ∩ ∂Dhk
= ∅,

for all j. Therefore for any x ∈ Ωj there exists δ > 0 such that either Bδ(x) ⊂ Dhk
or Bδ(x) ⊂ Ω \Dhk

. Finally
by taking into account that L2(Dhk

) → 0 we conclude Ωj ∩Dhk
= ∅ for k ≥ kj .

Then for every k ≥ kj we have that uhk
∈W 1,p,2(div; Ωj) and by (4.5) we get∫

Ωj

|Δuhk
|2dx ≤

∫
Ω\Dhk

|Δuhk
|2dx ≤M. (4.7)

Then we can extract a further subsequence still denoted by {uhk
} ⊂W 1,p,2(div; Ωj) such that⎧⎪⎨

⎪⎩
uhk

→ u in Lp(Ωj ; R2) and a.e.
∇uhk

⇀ ∇u in Lp(Ωj ; R2)
Δuhk

⇀ Δu in L2(Ωj).

By standard diagonalization argument we may assume that the extracted subsequence is the same for every j.
Then by the semicontinuity of the L2-norm we have

sup
j

∫
Ωj

|Δu|2dx ≤ sup
j

lim inf
k+∞

∫
Ωj

|Δuk|2dx ≤M.
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If we set P̃ = P \ ∂Ω, then we deduce u ∈W 1,p,2
0 (div; Ω \ P̃ ) and therefore ∇u ∈ SDMp(Ω) with P∇u ⊆ P ,

by Proposition 3.1. So we conclude that u ∈ ΔAMp,2(Ω). �

4.2. Lower bound

We provide the lower bound (1) in Definition 4.2.

Theorem 4.2. Let {εh}h be a sequence of positive numbers converging to zero. For every sequence {(uh, Dh)}h ⊂
Y (Ω), H-converging to u ∈ ΔAMp,2(Ω), we have

lim inf
h→∞

Fεh
(uh, Dh) ≥ F(u).

Proof. Up to a subsequence we may assume that the lim inf is actually a limit. As in the proof of Theorem 4.1,
by setting for every h, Ch =

⋃m(h)
i=1 γi, we get

M ≥ 1
4π

∫
∂Dh

(
1
εh

+ εhk
2

)
dH1 = m(h).

Up to subsequences we have m(h) = n for some natural number n. Hence there exists a set P of n points such
that ∂Dh converges in the Hausdorff metric to P with P∇u ⊆ P .

Let now {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ P invading Ω \ P . As in the proof of Theorem 4.1 we
may assume, up to a subsequence, that Δuh ⇀ Δu in L2(Ωj). Furthermore we have, by the same argument
used in the proof of Theorem 4.1, Ωj ⊂ Ω \Dh for h large and for any j. Consequently

lim inf
h→+∞

∫
Ω\Dh

|Δuh|2dx ≥ lim inf
h→+∞

∫
Ωj

|Δuh|2dx ≥
∫

Ωj

|Δu|2dx.

On the other hand, arguing as in Theorem 4.1, we infer that the limit u of the subsequence uh belongs to
ΔAMp,2(Ω), with Δu ∈ L2(Ω \ P ) and P∇u ⊆ P . So that by monotone convergence

lim inf
h→+∞

∫
Ω\Dh

|Δuh|2dx ≥
∫

Ω\P

|Δu|2dx =
∫

Ω

|Δu|2dx. (4.8)

As in the proof of Theorem 4.1, inequality (4.6) holds. Then we easily get

lim
h→∞

∫
Ω

|∇uh − U0|pdx ≥
∫

Ω

|∇u− U0|pdx. (4.9)

Finally we have
1
4π

∫
∂Dh

(
1
εh

+ εhk
2

)
dH1 ≥ n = H0(P ) ≥ H0(P∇u). (4.10)

Eventually by (4.8), (4.9), (4.10) and by the superlinearity property of the lim inf operator we achieve the result.
�

4.3. Upper bound

In [9] for the construction of the optimal sequence it is crucial to use a result due to Chambolle and Doveri
(see [10]). This result states that it is possible to approximate, in the H1-norm, a function u ∈ W 1,2(Ω \ C)
(where C is a closed set), by means of a sequence of functions uh ∈ W 1,2(Ω \ Ch) with Ch convergent to C in
the Hausdorff metric. In our case this argument does not apply due to presence of a second order differential
operator. Nevertheless since we work only with set of points it is possible to build an optimal sequence in a
more direct way.
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Theorem 4.3. Let {εh}h be a sequence of positive numbers converging to 0. For every u ∈ ΔAMp,2(Ω) there
exists a sequence {(uh, Dh)}h ⊂ Y (Ω) H-converging to u such that

lim sup
h→+∞

Fεh
(uh, Dh) ≤ F(u). (4.11)

Proof. We start by the construction of the sequence Dh. Let n be the number of points xi in P∇u. Then we
take Dh =

⋃n
i=1Bεh

(xi). So that L2(Dh) → 0, 1
εh
L2(Dh) → 0 and ∂Dh converges with respect to the Hausdorff

distance to P∇u. Moreover for h large enough we may assume Bεh
(xi)∩Bεh

(xj) = ∅ for i �= j. Now we build uh.
Let {ρh} ⊂ R be such that ρh ≥ 0 and ρh → 0 when h→ ∞. Let θh ∈ C∞(Ω) with the following property:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
θh = 1 on B ρh

2
(xi) for any i = 1, . . . , n

0 ≤ θh ≤ 1 on Bρh
(xi) \B ρh

2
(xi) for any i = 1, . . . , n

θ = 0 on Ω \Bρh
(xi) for any i = 1, . . . , n

‖∇θh‖∞ ≤ 1
ρh
·

(4.12)

We set uh = (1 − θh)u. It is not difficult to check that {(uh, Dh)}h ⊂ Y (Ω) and H-converges to u. We claim
that the pair (uh, Dh) realizes the inequality (4.11) for a suitable choice of the sequence ρh. By making the
computation we have

∇uh = (1 − θh)∇u− u∇θh.

Then ∫
Ω

|∇uh − U0|pdx =
∫

Ω

|∇u − U0 − θh∇u− u∇θh|pdx,
so that

lim sup
h→+∞

∫
Ω

|∇uh − U0|pdx ≤ lim sup
h→+∞

((∫
Ω

|∇u− U0|pdx
) 1

p

+

(∫
Ω

|θh∇u|pdx
) 1

p

+

(∫
Ω

|∇θhu|pdx
) 1

p
)p

.

(4.13)
Since |∇u|p ∈ L1(Ω), we have by applying the dominated convergence theorem

∫
Ω |θh∇u|pdx→ 0. Let us focus

on the term
∫
Ω
|∇θhu|p. By the Sobolev embedding we have u ∈ Lp∗

(Ω) with p∗ = 2p
2−p and hence |u|p ∈ L

p∗
p (Ω),

with p∗

p = 2
2−p .

By (4.12), using Holder’s inequality with dual exponents 2
2−p and 2

p , and taking into account that p < 2, we
have∫

Ω

|∇θhu|pdx ≤
n∑

i=1

∫
Bρh

(xi)\B ρh
2

(xi)

|∇θhu|pdx =
n∑

i=1

(∫
Bρh

(xi)

|∇θhu|pdx−
∫

B ρh
2

(xi)

|∇θhu|pdx
)

≤
n∑

i=1

(∫
Bρh

(xi)

|∇θh|2dx
) p

2

‖u‖p

Lp∗(Bρh
(xi))

≤
n∑

i=1

‖u‖p

Lp∗(Bρh
(xi))

π → 0, (4.14)

by Lebesgue’s Theorem, since the sequence χBρh
(xi) converges to 0 almost everywhere. From (4.13) it follows

that

lim sup
h→+∞

∫
Ω

∣∣∣∣∇uh − U0|pdx ≤ lim
h→+∞

((∫
Ω

∣∣∣∣∇u− U0|pdx
) 1

p

| +
(∫

Ω

|θh∇u|pdx
) 1

p

+

(∫
Ω

|∇θhu|pdx
) 1

p
)p

=

((∫
Ω

|∇u− U0|pdx
) 1

p
)p

=
∫

Ω

|∇u− U0|pdx. (4.15)
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Now we compute Δuh. The identity div(fA) = fdivA+ ∇f ·A yields

Δuh = (1 − θh)Δu − 2∇θh∇u− Δθhu.

Then by choosing ρh small enough we have from (4.12)

lim sup
h→+∞

∫
Ω\Dh

|Δuh|2dx ≤ lim
h→+∞

∫
Ω\Dh

|Δu|2dx =
∫

Ω

|Δu|2dx. (4.16)

Finally since for h large we have Bεh
(xi) ∩Bεh

(xj) = ∅ for i �= j we get

lim
h

1
4π

∫
∂Dh

(
1
εh

+ εhk
2

)
dH1 = lim

h

n∑
i=1

1
4π

∫
∂Bεh

(xi)

2
εh

dH1 = n = H0(P∇u). (4.17)

By recalling that the lim sup is a sublinear operation, by (4.15)–(4.17), we achieve the result. �

4.4. Variational property

We conclude this section by properly stating and proving the particular version of the Fundamental Theorem
of Γ-convergence which is, in this case, a direct consequence of Theorems 4.1, 4.2 and 4.3. The proof can be
achieved by a classical argument (see [7], Sect. 1.5). However we prefer to give the proof in order to make clear
that the classical variational setting is not directly available, and therefore the variational property has to be
proven.

Theorem 4.4. Let Fε and F be given respectively by (4.4) and (4.3). If {εh}h is a sequence of positive numbers
converging to zero and {(uh, Dh)} ⊂ Y (Ω) such that

lim
h→+∞

(Fεh
(uh, Dh) − inf

Y (Ω)
Fεh

(u,D)) = 0,

then there exist a subsequence {(uhk
, Dhk

)} ⊂ Y (Ω) and a minimizer u of F(u) with u ∈ ΔAMp,2(Ω), such
that {(uhk

, Dhk
)} H-converges to u.

Proof. We know from Theorems 4.2 and 4.3 that Fε Γ-converges to F . Let δ > 0 and u ∈ ΔAMp,2(Ω) be such
that

F(u) ≤ inf
ΔAMp,2(Ω)

F(u) + δ.

From Theorem 4.3 there exists a sequence {(ũh, D̃h)} ⊂ Y (Ω) such that

inf
ΔAMp,2(Ω)

F + δ ≥ F(u) ≥ lim sup
h→+∞

Fεh
(ũh, D̃h).

Then since δ is arbitrary it follows that

lim sup
h→+∞

inf
Y (Ω)

Fεh
≤ lim sup

h→+∞
Fεh

(ũh, D̃h) ≤ inf
ΔAMp,2(Ω)

F . (4.18)

Let now {(uh, Dh)} ⊂ Y (Ω) be such that limh→+∞(Fεh
(uh, Dh) − infY (Ω) Fεh

(u,D)) = 0. Then from The-
orem 4.1, up to subsequences, the sequence {(uh, Dh)}h H-converges to some u ∈ ΔAMp,2(Ω). Then by
Theorem 4.2 and taking into account (4.18) we deduce

inf
ΔAMp,2(Ω)

F ≤ F(u) ≤ lim inf
h→+∞

inf
Y (Ω)

Fεh
≤ lim sup

h→+∞
inf

Y (Ω)
Fεh

≤ inf
ΔAMp,2(Ω)

F .

Then we easily get the thesis. �
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5. Approximation by smooth functions

By following the Braides-March’s approach in [9] we approximate the measure H1�∂D by the Modica-
Mortola’s energy density given by (ε|∇w|2 + 1

εW (w))dx where W (w) = w2(1 − w)2 and w ∈ C∞(Ω). The
next step is to replace the regular set D with the level set of w. Let us set Z = {x, ∇w(x) = 0}. By Sard’s
Lemma we have that L1(w(Z)) = 0. In particular, if w takes values into the interval [0, 1], we infer that for
almost every t ∈ (0, 1) the set Z∩w−1(t) is empty. Consequently for almost every t ∈ (0, 1) the t-level set {w < t}
is a regular set with boundary {w = t}. Now, since we want to replace the set D, we need that {w < t} ⊂⊂ Ω.
Then we require 1 − w ∈ C∞

0 (Ω; [0, 1]). Furthermore for almost every t, we have k({w = t}) = div
(

∇w
|∇w|

)
,

where k is the curvature of the set {w = t}. From all of this we are led to define the following space:

S(Ω) = {(u,w); u ∈ W 1,p,2
0 (div; Ω); 1 − w ∈ C∞

0 (Ω; [0, 1])} (5.1)

and having in mind the coarea formula, the following sequence of functionals defined on S(Ω)

Gε(u,w) =
∫

Ω

w2|Δu|2dx+
1

8πC

∫
Ω\{|∇w|=0}

(
1
βε

+ βε

(
div

(
∇w
|∇w|

))2)(
ε|∇w|2 +

1
ε
W (w)

)
dx

+
∫

Ω

|∇u− U0|pdx+
1
γε

∫
Ω

(1 − w)2dx, (5.2)

with C =
∫ 1

0

√
W (t)dt. The last term forces wε to be equal to one almost everywhere in the limit. From now

on, the parameters ε, βε, γε will be related as follows:

lim
ε→0+

βε

γε
= 0, (5.3)

lim
ε→0+

ε| log(ε)|
βε

= 0. (5.4)

The convergence that plays the role of the H-convergence is the following. With a slight abuse of notation this
convergence will be still denoted by H.

Definition 5.1. Let {(uh, wh)}h be a sequence S(Ω). Set Dt
h = {wh < t}. We say that {(uh, wh)}h H-converges

to u ∈ ΔAMp,2(Ω), as h→ +∞, if for every t ∈ (0, 1) the sequence {(uh, D
t
h)}h in Y (Ω) H-converges to u.

As in the previous section, we adopt the ad hoc definition of Γ-convergence with respect to the convergence
above.

Definition 5.2. We say that Gε Γ-converges to F if, for every sequence of positive numbers εh → 0 and for
every u ∈ ΔAMp,2(Ω), we have:

(1) for every sequence {(uh, wh)}h ⊂ S(Ω) H-converging to u

lim inf
h→+∞

Gεh
(uh, wh) ≥ F(u);

(2) there exists a sequence {(uh, wh)}h ⊂ S(Ω) H-converging to u such that

lim sup
h→+∞

Gεh
(uh, wh) ≤ F (u).

As in the previous section, we remark that the property which guarantees the convergence of the sequences
asymptotically minimizing Gε to a minimum of F must be proved, since we cannot apply the Fundamental
Theorem of Γ-convergence. We will state the analogous of Theorem 4.4 at the end of the section.
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5.1. Compactness

The compactness result goes as follows.

Theorem 5.1. Let {εh}h → 0+ such that

Fεh
(uh, wh) ≤M. (5.5)

Then there exist a subsequence {(uhk
, whk

)}k ⊂ S(Ω), u ∈ ΔAMp,2(Ω) such that {(uhk
, whk

)}k H-converges
to u.

Proof. The first part of proof is as in [9]. For the convenience of the reader we give the complete proof.
By Young’s inequality and by (5.5) we get

M ≥ 2
∫

Ω\{|∇wh|=0}
|∇wh|

√
W (wh)

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)
dx.

Now by coarea formula, we obtain

M ≥ 2
∫ 1

0

√
W (t)

∫
{wh=t}∩{|∇wh|�=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)
dH1dt. (5.6)

Thanks to Sard’s Lemma, for any h there exists a L1-negligible set Nwh
⊆ (0, 1) such that

{wh = t} = ∂{wh < t}, {wh < t} ∈ R(Ω), for t ∈ (0, 1) \ Nwh
.

On {wh = t} for t ∈ (0, 1) \ Nwh
we have

|∇wh| �= 0 and κ({wh = t}) = div

(
∇wh

|∇wh|

)
·

Now since the union
⋃

h Nwh
is L1-negligible, from (5.6) we have

M ≥ 2
∫

(0,1)\⋃h Nwh

√
W (t)

∫
∂{wh<t}

(
1
βεh

+ βεh
κ2

)
dH1dt.

By applying Fatou’s Lemma and taking into account that the set
⋃

h Nwh
does not depend on h we get

M ≥ 2
∫

(0,1)\⋃h Nwh

√
W (t) lim inf

h→+∞

∫
∂{wh<t}

(
1
βεh

+ βεh
κ2

)
dH1dt. (5.7)

Hence we deduce the existence of a L1-negligible set Q, with
⋃

h Nwh
⊆ Q, such that for every t ∈ (0, 1) \Q

lim inf
h→+∞

∫
∂{wh<t}

(
1
βεh

+ βεh
κ2

)
dH1 ≤Mt, (5.8)

where the constant Mt does not depend on h.
Then, by the same density argument used in the proof of Theorem 5.1 of [9], by taking the limit ρ→ 0+ we

infer ∂{whk
< t} converges with respect to the Hausdorff metric to a set P t ⊂ Ω for every t ∈ (0, 1). Therefore,

as in the proof of Theorem 4.1, we can extract a subsequence {uhk
}k which converges strongly in Lp(Ω) to a

function u ∈ ΔAMp,2(Ω) with P∇u ⊆ P t for every t ∈ (0, 1). Hence we have that for every t ∈ (0, 1) the
sequence {(uhk

, Dt
hk

)}k H-converges to u and the proof is achieved. �
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5.2. Lower bound

We give the proof of the lower bound (1) in Definition 5.2. In the proof it will be crucial having the
convergence of the t-level set for every t ∈ (0, 1).

Theorem 5.2. Let {εh}h be a sequence of positive numbers converging to zero. For every sequence {(uh, wh)}h ⊂
S(Ω) H-converging to u ∈ ΔAMp,2(Ω), we have

lim inf
h→+∞

Fεh
(uh, wh) ≥ F(u).

Proof. Without loss of generality we assume, up to subsequences,

+∞ > lim inf
h→+∞

Fεh
= lim

h→+∞
Fεh

.

As in the proof of Theorem 5.1 we get that, for every t ∈ (0, 1), L2({wh < t}) → 0 and ∂{wh < t} → P t in the
Hausdorff distance. For any t ∈ (0, 1) we have (see also [9] for a similar argument)

∫
Ω

wh
2|Δuh|2dx =

∫
{wh<t}

wh
2|Δuh|2dx+

∫
{wh≥t}

wh
2|Δuh|2dx ≥ t2

∫
Ω

(1 − χ{wh<t})|Δuh|2dx. (5.9)

Let {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ P t invading Ω \ P t. Then we may assume that uh ⇀ weakly
in W 1,p

0 (Ω) and Δuh converges weakly in L2(Ωj) to Δu. Therefore as in the proof of Theorem 4.2 we get

lim
h→+∞

∫
Ω

|∇uh − U0|pdx ≥
∫

Ω

|∇u− U0|pdx, (5.10)

and

lim inf
h→+∞

t2
∫

Ω

(1 − χ{wh<t})|Δuh|2dx ≥ t2
∫

Ωj

|Δu|2dx,

for any j.
Then by (5.9) and, by taking into account that |Δu| is in L2(Ω \ P t) with P∇u ⊆ P t, it follows that

lim inf
h→+∞

∫
Ω

wh
2|Δuh|2dx ≥ t2

∫
Ω

|Δu|2dx

and eventually by taking the limit t→ 1

lim inf
h→+∞

∫
Ω

wh
2|Δuh|2dx ≥

∫
Ω

|Δu|2dx. (5.11)

Finally, as in the proof of Theorem 4.2 (inequality 4.10) we have

lim inf
h→+∞

1
4π

∫
∂{wh<t}

(
1
βεh

+ βεh
k2

)
dH1 ≥ H0(P t) ≥ H0(P∇u). (5.12)
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Now arguing as in the proof of Theorem 5.1 and by taking into account (5.12), we get

lim inf
h→+∞

∫
Ω\{|∇wh|=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)(
εh|∇wh|2 +

1
εh
W (wh)

)
dx

≥ 2 lim inf
h→+∞

∫
(0,1)\⋃h Nwh

√
W (t) lim inf

h→+∞

∫
∂{wh<t}

(
1
βεh

+ βεh
k2

)
dH1dt

≥ 8π
∫

(0,1)

H0(P t)
√
W (t)dt ≥ 8πCH0(P∇u). (5.13)

By collecting (5.10), (5.11) and (5.13) we achieve the thesis. �

5.3. Upper bound

As in [9] to build wh we use the construction given in [4], while the optimal sequence uk is chosen as in
Theorem 4.3.

Theorem 5.3. Let {εh} be a sequence of positive numbers converging to 0. For every u ∈ ΔAMp,2 there exists
a sequence {(uh, wh)}h ⊂ S(Ω), H-converging to u, such that

lim sup
h→∞

Gεh
(uh, wh) ≤ F(u). (5.14)

Proof. If A ⊂ R
2 we set

δA(x) = d(x,A) − d(x,R2 \A).

We start with the construction of wh.
As in the proof of Theorem 4.3 we set P∇u = {x1, ..., xn} and we define

Dh =
n⋃

i=1

Bβεh
(xi).

Since Dh is a regular set by taking into account condition (5.4) for h large enough we have

{x ∈ Ω : d(x,Dh) < 2εh| log εh|} ⊂⊂ Ω. (5.15)

Let η be the optimal profile for Modica-Mortola’s energy, that is the solution of the ODE⎧⎪⎨
⎪⎩
η′(t) =

√
W (η(t)) on R

η(−∞) = 0,
η(+∞) = 1,

given by η(t) = 1
2 (1 + tanh t

2 ).
For every h let ψh : [0,+∞) → [0, 1] be a C∞-function such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψh = 1 on [0, | log εh|]
ψh = 0 on [2| log εh|,+∞]
ψ′

h < 0 on [| log εh|, 2| log εh|]
‖ψ′

h‖L∞(| log εh|,2| log εh|) = O
(

1
| log εh|

)
·
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As in [4] and in [9] we define

ηh(t) =

{
η
(

t
εh

)
ψh

(
t

εh

)
+ 1 − ψh

(
t

εh

)
if t ≥ 0

1 − η(−t
εh

) if t < 0.

Then we set wh(x) = ηh(δDh
(x)). We claim that 1−wh(x) ∈ C∞

0 (Ω; [0, 1]) for h large enough. It is not difficult to
check that wh ∈ C∞

0 (Ω). Let now x ∈ ∂Ω then δDh
(x) ≥ 0 and 1−wh(x) = ψh( δDh

(x)

εh
)
(
1 − η

(
δDh

(x)

εh

))
. From

(5.15), it follows δDh
(x) ≥ 2εh| log εh| for h large enough, hence the claim follows. Then we take {(uh, wh)}h as

optimal sequence, where uh is given as in Theorem 4.3.
First of all we have to check that {(uh, wh)}h H-converges to u. For any x ∈ Ω \ P∇u we have that for

h large enough δDh
(x) ≥ 0 and one can check that wh(x) → 1 for every x ∈ Ω \ P∇u. This implies that

L2({wh < t}) → 0 for every t ∈ (0, 1). Now for every t ∈ (0, 1) we write

{wh = t} =
({wh = t} ∩Dh

) ∪ ({wh = t} ∩ Ω \Dh

)
. (5.16)

Hence, since wh(x) → 1 for x ∈ Ω \P∇u, for any t ∈ (0, 1) there exists h(t) such that {wh = t} ∩Ω \Dh = ∅ for
every h ≥ h(t). So that from (5.16) it follows that for every t ∈ (0, 1), {wh = t} → P∇u when h → +∞. So we
can conclude that (uh, wh) H-converges to u.

As in [4] we set

D1
h = {x ∈ Ω : |δDh

(x)| < εh| log εh|}, D2
h = {x ∈ Ω : εh| log εh| < |δDh

(x)| < 2εh| log εh|}.

Therefore we can write

∫
Ω\{|∇wh|=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)(
εh|∇wh|2 +

1
εh
W (wh)

)
dx

=
∫

D1
h\{|∇wh|=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)(
εh|∇wh|2 +

1
εh
W (wh)

)
dx

+
∫

D2
h\{|∇wh|=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)(
εh|∇wh|2 +

1
εh
W (wh)

)
dx

= Ih + IIh. (5.17)

For x ∈ D1
h, we have |δDh

(x)|
εh

< | log εh| therefore wh(x) = η
( |δDh(x)|

εh

)
. By taking into account the definition

of η we have εh

1+εh
≤ wh(x) ≤ 1

1+εh
. Moreover it easy to check that

η′h(t) =
1
εh
η′
(
t

εh

)
=

1
εh

√√√√Wη

((
t

εh

))
; |∇wh(x)| = |η′h(δDh(x))|.

This, together with the coarea formula yields

Ih = 2
∫ 1

1+εh

εh
1+εh

√
W (t)

∫
{wh=t}

(
1
βh

+ βhk
2

)
dH1dt.
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Now by change of variables we get

Ih = 2
∫ εh| log εh|

−εh| log εh|
η′h
√
W (ηh(s))

∫
{δDh

=s}

(
1
βh

+ βhk
2

)
dH1ds.

Since for h large enough we have (see the proof of [4], Thm. 4.3)

∫
{δDh

=s}

(
1
βh

+ βhk
2

)
dH1 =

∫
∂Dh

(
1
βh

+ βhk
2

)
dt+O(εh| log(εh)|),

we get

Ih = 2
∫ 1

1+εh

εh
1+εh

√
W (t)dt

∫
∂Dh

(
1
βh

+ βhk
2

)
dH1 +O(εh| log(εh)|)

∫ 1
1+εh

εh
1+εh

√
W (t)dt.

Then by using (4.17)

lim
h→+∞

Ih = 8πH0(P∇u)
∫ 1

0

√
W (t)dt. (5.18)

Moreover with the same argument and by using the definition of wh one can check that

lim
h→+∞

IIh = 0. (5.19)

By (5.18) and (5.19) we have

lim
h→+∞

1
8πC

∫
Ω\{|∇wh|=0}

(
1
βεh

+ βεh

(
div

(
∇wh

|∇wh|

))2)(
εh|∇wεh

|2 +
1
εh
W (wεh

)
)

dx = H0(P∇u). (5.20)

Now let us examine the terms involving uh. As in the proof of Theorem 4.3 we have

lim sup
h→+∞

∫
Ω

|∇uh − U0|pdx ≤
∫

Ω

|∇u− U0|pdx. (5.21)

Furthermore, by taking into account that wh(x) = 1 if δDh
(x) ≥ 2εh| log(εh)| and wh(x) = 0 if δDh

(x) <
−2εh| log(εh)|, by choosing ρh small enough, we obtain

lim sup
h→+∞

∫
Ω

w2
h|Δuh|2dx = lim

h→+∞

∫
Ω\D0

h

|Δu|2dx =
∫

Ω\P∇u

|Δu|2dx =
∫

Ω

|Δu|2dx, (5.22)

where D0
h = {x ∈ Ω : δDh

(x) < −2εh| log(εh)|}. Finally from the definition of wh, it follows that wh = 1
outside the set D2 log εh

:=
⋃n

i=1 B2 log εh
(xi) and hence thanks to (5.3) and (5.4)

lim sup
h→+∞

1
γh

∫
Ω

(1 − wh)2dx ≤ lim
h→+∞

L(D2 log εh
)

1
γh

= 0. (5.23)

The thesis follows by collecting (5.20), (5.21), (5.22) and (5.23). �
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5.4. Variational property

Also in this case we obtain, as a direct consequence of Theorems 5.1, 5.2 and 5.3, the corresponding variational
property. The proof is as in Theorem 4.4.

Theorem 5.4. Let Gε and F be given respectively by (5.2) and (4.3). If {εh} is a sequence of positive numbers
converging to zero and {(uh, wh)} ⊂ S(Ω) such that

lim
h→+∞

(Gεh
(uεh

, wεh
) − inf

S(Ω)
Gεh

(u,w)) = 0,

then there exist a subsequence {(uhk
, whk

)} ⊂ S(Ω) and a minimizer u of F(u), with u ∈ ΔAMp,2(Ω), such
that {(uhk

, whk
)}k H-converges to u.

6. De Giorgi’s conjecture

One of the objectives of De Giorgi was to find a variational approximation of a curvature depending functional
of the type:

F 2(D) =
∫

∂D

(1 + κ2)dH1;

where D is a regular set and κ is a curvature of its boundary ∂D.
Since ∂D can be represented as the discontinuity set of the function w0 = 1 − χD, by Modica-Mortola’s

Theorem it follows that there is a sequence of non constant local minimizers such that wε → w0 with respect
to the L1-convergence and

lim
ε→0

F 1
ε (wε) := CH1(∂D),

with F 1
ε (w) =

∫
Ω
ε|∇w|2 + 1

εW (w)dx and C =
∫ 1

0

√
W (t)dt.

Furthermore looking at the Euler-Lagrange equation associated to a contour length term, yields a contour

curvature term κ, while the Euler-Lagrange equations for the functional F 1
ε (w) contains a term 2εΔw− W

′
(w)
ε .

Then De Giorgi suggested to approximate by Γ-convergence the functional F 2 by adding to the Modica-
Mortola approximating functionals the following term

F 2
ε (w) =

∫
Ω

(
2εΔw − W

′
(w)
ε

)2

dx.

In [5] Bellettini and Paolini have proven the lim sup inequality, while the validity of the lim inf inequality for
a modified version of the original conjecture has been proven by Röger and Shätzle (see [23]).

Inspired by the De Giorgi’s conjecture (see [15] for the original statement) it appears natural to investigate,
in the spirit of [9], the possibility of approximating the functional F by means of a sequence Fε much more
convenient from a numerical point view (see [19]):

Fε(u,w) =
∫

Ω

w2|Δu|2dx+
1

8πC

(
βε

2ε

∫
Ω

(
2εΔw − W ′(w)

ε

)2

dx+
1
βε

∫
Ω

(
ε|∇w|2 +

1
ε
W (w)

)
dx

)

+
∫

Ω

|∇u− U0|pdx+
∫

Ω

1
γε

(1 − w2)dx.

The presence of the term 1
2ε will be clear in the proof. By the way we are able to prove only the Γ-limsup

inequality.
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Theorem 6.1. Let {εh} be a sequence of positive numbers converging to zero. For every u ∈ ΔAMp,2(Ω),
there exists a sequence {(uh, wh)}h ⊂ S(Ω) H-converging to u such that

lim sup
h→+∞

Fεh
(uh, wh) ≤ F(u). (6.1)

Proof. Let {(uh, wh)}h be the optimal sequence of Theorem 5.3. It is not difficult to see that for every x ∈ D1
h

the function δh(x) is regular and using the definition of wh and taking into account that η′ =
√
W (η) the

following identity holds

2εhΔwh − W ′(wh)
εh

= 2εhη
′
hΔδDh

(x) + 2εη′′h − W ′(wh)
εh

= 2εhη
′
h(δDh

(x)).

For h large enough we also have ΔδDh
(x) = κ({δDh

(x) = t}), for t ∈ (0, 1). Besides on D1
h we have wh(x) =

η
(

δDh
(x)

εh

)
and hence the level set {δDh

(x) = t} corresponds to the level set
{
wh(x) = η

(
t′
εh

)}
with 0 ≤ η ≤ 1,

so that we infer

κ({δDh
(x) = t}) = div

(
∇wh

|∇wh|

)
·

By proceeding as in the proof of Theorem 5.3 and taking into account the equality 2εh|η′h(δDh
(x))| = 2εh|∇wh|

we have

Ih =
∫

D1
h

βεh

2εh

(
2εhΔwh − W ′(wh

εh

)2

+
1
βεh

(
εh|∇wh|2 +

1
εh
W (wh)

)
dx

= 2
∫

D1
h

(
βεdiv

( ∇wh

|∇wh|
)2

+
1
βεh

)√
W (wh)|∇wh|dx.

Then as in the proof of Theorem 5.3 we conclude

lim
h→+∞

Ih = 8πH0(P∇u)
∫ 1

0

√
W (t)dt.

By the same calculation on D2
h one can check that the integral over D2

h vanishes as in the proof of Theorem 5.3.
The other terms can be estimated exactly as in the proof of Theorem 5.3 and therefore the thesis is achieved.

�
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