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APPROXIMATE CONTROLLABILITY BY BIRTH CONTROL
FOR A NONLINEAR POPULATION DYNAMICS MODEL

Otared Kavian1 and Oumar Traoré2

Abstract. In this paper we analyse an approximate controllability result for a nonlinear population
dynamics model. In this model the birth term is nonlocal and describes the recruitment process in
newborn individuals population, and the control acts on a small open set of the domain and corresponds
to an elimination or a supply of newborn individuals. In our proof we use a unique continuation property
for the solution of the heat equation and the Kakutani-Fan-Glicksberg fixed point theorem.
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1. Introduction

Let Ω ⊂ R
N be a bounded domain where N ≥ 1 is an integer, and consider the following system:

∂y

∂t
+

∂y

∂a
− Δy + μy = 0, in (0, T )× (0, A) × Ω (1.1)

y(t, a, σ) = 0, on (0, T )× (0, A) × ∂Ω (1.2)
y(0, a, x) = y0(a, x), in (0, A) × Ω (1.3)
y(t, 0, x) = v(t, x)1ω(x) + F∗(y), in (0, T )× Ω (1.4)

where, for a given function F : (0, T ) × Ω × R −→ R, we denote by F∗ the operator defined by

F∗(y)(t, x) := F

(
t, x,

∫ A

0

β(a)y(t, a, x)da

)
.

In the above system T > 0, A > 0 are positive constants, ∂Ω is the boundary of Ω (for Dirichlet boundary
conditions there is no need to assume any regularity, but for other boundary conditions appropriate boundary
regularity must to be assumed). Here Δ is the Laplacian with respect to the spatial variable x and 1ω is the
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characteristic function of a small subset ω ⊂ Ω, where the control v is assumed to act. The system (1.1)–(1.4)
arises in population dynamics, where y(t, a, x) denotes the distribution of individuals of age a at time t and
location x, A is the maximal life expectancy; μ(a) and β(a) are respectively the natural death rate and the
natural birth rate of individuals of age a. The flux of individuals here has the form −∇y(t, a, x), but actually a
slightly more general flux can be treated with the same method, such as a flux defined by −C(x)∇y(t, a, x), pro-
vided the resulting elliptic operator y �→ −div(C(x)∇y) possesses an appropriate unique continuation property,
see below Remark 3.1. The boundary ∂Ω is assumed to be inhospitable (hence the boundary condition (1.2)).
Finally, in (1.3), y0(a, x) is the initial distribution of individuals of age a at position x.

Let us introduce the so-called net reproduction rate

R :=
∫ A

0

β(a) exp
(
−
∫ a

0

μ(s)ds

)
da.

It is known that when F (t, x, s) := s (see for instance Anita [2]), if R < 1 then

lim
t→+∞ ‖y(t)‖L2((0,A)×Ω) = 0

while if R > 1 then
lim

t→+∞ ‖y(t)‖L2((0,A)×Ω) = +∞.

In this paper our aim is to analyse an approximate controllability result for the system above. More precisely
in the sequel, for all ε > 0 small enough and all targets h ∈ L2 ((0, A) × Ω), we study the existence of a control
v ∈ L2 ((0, T ) × ω) such that the corresponding solution of the system (1.1)–(1.4) verifies

‖y(T, ·, ·)− h‖ ≤ ε. (1.5)

A first controllability result for a linear age and space structured population dynamics model was obtained
by Ainseba and Langlais in [1], where it was shown that a certain set of profiles is approximately reachable at
any given time T . As far as we may be aware of, a first work on the controllability with birth control was due
to Barbu et al. in [4]. However in that work, the system did not involve diffusion terms and, as a consequence,
one cannot use the method therein when the control acts on a small open subset ω of Ω. More precisely in [4],
a null controllability result by birth control for a linear McKendrick model was proved by means of an internal
controllability result.

In [10], the second author of the present paper studied an application of the approximate controllability
property to data assimilation problems. The question addressed there is to determine whether one can use an
approximate controllability result for recovering the initial data for a linear population dynamics model. The
unique continuation result used there, is derived from a new Carleman inequality.

In this paper we address the question of the approximate controllability when the birth control acts on a
small open set of the domain and in our proof we use a non standard unique continuation property. This
unique continuation result is established using a classical unique continuation result for the heat equation (see
for instance Lin [7]), and an approach developed in Kavian and de Teresa [5].

The remainder of this paper is organized as follows: in the next section we give the assumptions and state
the main result; Section 3 is devoted to the study of an auxiliary linear equation, and in Section 4 we give the
proof of our main result.

2. Assumptions and main results

In what follows we make the following assumptions:
(H1) μ ∈ L1

loc(0, A), μ ≥ 0 a.e. in (0, A), and lima→A

∫ a

0 μ(s)ds = +∞.
(H2) β ∈ C0,1([0, A]), the space of Lipschitz functions on [0, A], moreover β ≥ 0 and there exists A0 < A1 such
that supp(β) ⊂ [A0, A1] ⊂ ]0, A[.
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(H3) For 0 < a < A, denoting π(a) := exp
(− ∫ a

0 μ(s)ds
)

the survival likelihood, we assume that π−1y0 ∈
L2((0, A) × Ω).
(H4) F : (0, T ) × Ω × R −→ R is a Caratheodory function such that a.e. in (t, x) ∈ (0, T ) × Ω the function
s �→ F (t, x, s) is in C1(R), verifies F (t, x, 0) = 0 and moreover is globally Lipschitz: for some given M0 > 0, a.e.
in (t, x) ∈ (0, T ) × Ω and all s1, s2 ∈ R we have

|F (t, x, s1) − F (t, x, s2)| ≤ M0 |s1 − s2| .
To such a function F , we associate an operator F∗ defined as follows: for y ∈ L1((0, T ) × (0, A) × Ω) we set

F∗(y)(t, x) := F

(
t, x,

∫ A

0

β(a)y(t, a, x)da

)
. (2.1)

Remark 2.1. The assumptions (H1) and (H2) are classical assumptions in the modelisation of population
dynamics. Indeed, since μ and β are supposed to be the natural rates of death and birth respectively, it is
obvious that the conditions μ ≥ 0 a.e. in (0, A) and β ≥ 0 a.e. in (0, A) are natural. On the other hand the
condition

lim
a→A

∫ a

0

μ(s)ds = +∞
means that the survival likelihood π(a) = exp

(− ∫ a

0 μ(s)ds
)

tends to zero as a tends to A.
The last condition on the birth rate β in (H2) means, naturally, that the young and old individuals are not

fertile. Under these hypotheses, it was proved in [8] that the system has a unique solution.
We also recall that if u ∈ L2

(
(0, T )× (0, A) ; H1

0 (Ω)
)

verifies

∂u

∂t
+

∂u

∂a
∈ L2

(
(0, T )× (0, A); H−1(Ω)

)
,

then one can define the trace u(t0, ·, ·) ∈ L2 ((0, A) × Ω) at t0 ∈ [0, T ], and analogously the trace u(·, a0, ·) ∈
L2 ((0, T )× Ω) at a0 ∈ [0, A] (see for instance Langlais [6], or Anita [2]).

Let us state now the main result of this paper.

Theorem 2.2. Assume that the assumptions (H1)–(H4) are satisfied and that T > A. Then for all h ∈
L2((0, A)×Ω) and ε > 0, there exists v ∈ L2 ((0, T )× ω) such that the corresponding solution of the system (1.1)–
(1.4) verifies (1.5).

Remark 2.3. We introduce the following change of unknown functions:

ŷ(t, a, x) := (π(a))−1y(t, a, x), (2.2)
ŷ0(a, x) := (π(a))−1y0(a, x), (2.3)

β̂(a) := π(a)β(a). (2.4)

Since π(0) = 1 and β̂(a)ŷ(t, a, x) = β(a)y(t, a, x), it follows that F̂∗(ŷ)(t, x) = F∗(y)(t, x) on (0, T ) × Ω and
therefore ŷ solves the problem:

∂ŷ

∂t
+

∂ŷ

∂a
− Δŷ = 0 in (0, T ) × (0, A) × Ω (2.5)

ŷ(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω (2.6)
ŷ(0, a, x) = ŷ0(a, x) in (0, A) × Ω (2.7)

ŷ(t, 0, x) = v(t, x)1ω(x) + F̂∗(ŷ) in (0, T )× Ω. (2.8)
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Therefore, the problem stated in Theorem 2.2 is reduced to find a control v ∈ L2 ((0, T ) × ω) such that the
solution of the system (2.5)–(2.8) with ŷ0 ∈ L2 ((0, A) × Ω) satisfies (1.5). On the other hand without loss of
generality, we can assume that ŷ0 ≡ 0. Indeed, let ϕ be the solution of the free evolution equation, that is
solution to the system

∂ϕ

∂t
+

∂ϕ

∂a
− Δϕ = 0 in (0, T ) × (0, A) × Ω (2.9)

ϕ(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω (2.10)
ϕ(0, a, x) = ŷ0(a, x) in (0, A) × Ω (2.11)
ϕ(t, 0, x) = F∗(ϕ) in (0, T ) × Ω. (2.12)

This system admits a unique solution, as one may see by an easy adaptation of the method used in Ouédraogo
and Traoré [9], where the Neumann boundary condition case is studied. Then setting

ỹ := ŷ − ϕ,

one checks that ỹ solves the system:

∂ỹ

∂t
+

∂ỹ

∂a
− Δỹ = 0 in (0, T )× (0, A) × Ω (2.13)

ỹ(t, a, σ) = 0 on (0, T ) × (0, A) × ∂Ω
ỹ(0, a, x) = 0 in (0, A) × Ω
ỹ(t, 0, x) = v(t, x)1ω(x) + G∗(ỹ) in (0, T ) × Ω (2.14)

where one may check that the operators G and G∗ defined by

G∗(ỹ) := G

(
t, x,

∫ A

0

β̂(a)ỹda

)

:= F

(
t, x,

∫ A

0

β̂(a)(ỹ + ϕ)da

)
− F

(
t, x,

∫ A

0

β̂(a)ϕda

)
,

satisfy clearly the same condition (H4) as F, F∗. In this way one sees that the problem is reduced to finding v
such that the solution of the system (2.13)–(2.14) satisfies

‖ỹ(T, ·, ·) − h1‖ ≤ ε,

where h1 := h− ϕ(T, ·, ·). Consequently, we may, and we will, consider the system (2.5)–(2.8) with ŷ0 = y0 = 0
and write β instead of β̂, and y instead of ŷ.

The next section is devoted to the study of the linear case.

3. Study of the linear system

We set

H(t, x, s) =

{
F ′(t, x, 0) if s = 0
F (t, x, s)

s
if s �= 0.

(3.1)
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Using (H4) it follows that the function H is continuous and bounded on (0, T ) × Ω × R; we shall denote by M
the upper bound of the function H

M := sup
s∈R

|s|−1‖F (·, ·, s)‖L∞((0,T )×Ω). (3.2)

Let us consider for a given Y 0 ∈ L2 ((0, T ) × Ω) the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y

∂t
+

∂y

∂a
− Δy = 0 in (0, T )× (0, A) × Ω

y(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω
y(0, a, x) = 0 in (0, A) × Ω
y(t, 0, x) = v(t, x)1ω + H(t, x, Y 0)Y in (0, T ) × Ω

(3.3)

where we set

Y (t, x) :=
∫ A

0

β(a)y(t, a, x)da. (3.4)

A solution of the system (2.5)–(2.8) with y0 = 0 is obtained as a fixed point of the mapping Y 0 �→ Y .
Next we define the coefficient β0 by

β0(t, a, x) := H(t, x, Y 0)β(a), (3.5)

and for g ∈ L2 ((0, A) × Ω) fixed we consider an adjoint system which reads:

− ∂p

∂t
− ∂p

∂a
− Δp = β0(t, a, x)p(t, 0, x) in (0, T )× (0, A) × Ω (3.6)

p(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω (3.7)
p(T, a, x) = g(a, x) in (0, A) × Ω (3.8)
p(t, A, x) = 0 in (0, T ) × Ω. (3.9)

We recall that, using a fixed point method, and the arguments of Anita [2] or Ouédraogo and Traoré [9], one
can show easily that the system (3.6)–(3.9), admits a unique solution.

Before proving our unique continuation result, which plays a crucial role in the proof of our main result, we
state and prove the following elementary lemma.

Let us denote by (λj , ϕj)j≥1 the eigenvalues and normalized eigenfunctions of −Δ on H1
0 (Ω), that is:

−Δϕj = λjϕj in Ω, and ϕj = 0 on ∂Ω.

It is known that (ϕj)j≥1 is a Hilbert basis of L2(Ω).

Remark 3.1. As one may see by a rapid inspection of the arguments we are using in this paper, instead of the
elliptic operator y �→ −Δy one can consider more general elliptic operators such as

y �→ −div(C(·)∇y),

where C ∈ (W 1,∞(Ω)
)N×N

, C(x)∗ = C(x),
∃α∗ > 0, ∀ ξ ∈ R

N , ∀x ∈ Ω, C(x)ξ · ξ ≥ α∗|ξ|2.

Indeed for such an operator a unique continuation result is valid: if for a function ϕ ∈ H1
0 (Ω) one has

−div(C∇ϕ) = λϕ, and ϕ ≡ 0 in ω, then ϕ ≡ 0 in Ω. This can be used to show that Lemma 3.2 can be
established for such an operator, where the ϕj ’s are the associated eigenfunctions. The remainder of the ar-
guments of this paper are essentially unchanged (see also [5] where the relation between unique continuation
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results for elliptic operators and unique continuation results for solutions to the associated heat equation is
extensively used).

Lemma 3.2. Let (cj)j≥1 be a sequence of complex numbers such that for some τ > 0 we have∑
j≥1

e2λjτ |cj |2 < ∞.

Then the function
z :=

∑
j≥1

cjϕj ∈ L2(Ω)

is well defined and if z ≡ 0 on a nonempty open subset ω ⊂ Ω, then z ≡ 0 on Ω and cj = 0 for all j ≥ 1.

Proof. It is clear that the function
w0 :=

∑
j≥1

eλjτcjϕj ∈ L2(Ω)

is well defined and that upon solving the linear heat equation

∂w

∂s
− Δw = 0 in (0,∞) × Ω, w(0, x) = w0(x), w(s, ·) = 0 on (0,∞) × ∂Ω,

the solution is given by
w(s, ·) =

∑
j≥1

(w0|ϕj)e−λjs ϕj =
∑
j≥1

eλjτ cj e−λjs ϕj .

Observe that since w(τ, ·) = z(·) vanishes identically on ω, according to the unique continuation principle for
the heat equation (see for instance Lin [7], the main theorem of that paper) we conclude that w(s, x) ≡ 0 on
(0,∞) × Ω and finally that w0 ≡ z ≡ 0 on Ω, and cj = 0 for all j ≥ 1. �

Now, we prove the following unique continuation principle, which plays a crucial role in the proof of our main
result.

Proposition 3.3. Let g ∈ L2((0, A) × Ω), let the hypotheses (H1)–(H4) be satisfied, and set β̂(a) := π(a)β(a)
and β0(a, t, x) := H(t, x, Y 0(t, x))β̂(a) where H is given by (3.1) and Y 0 ∈ L2((0, T )×Ω) is fixed. If the solution
p ∈ L2((0, T )× (0, A); H1

0(Ω)) of (3.6)–(3.9) verifies p(t, 0, x) = 0 in (0, T )×ω then p ≡ 0 in (0, T )× (0, A)×Ω.

Proof. It is rather more convenient to prove the result for the forward system, that is setting z(t, a, x) :=
p(T − t, A − a, x), to prove that z ≡ 0 whenever z(t, A, x) = 0 in (0, T ) × ω. Clearly z satisfies the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂z

∂t
+

∂z

∂a
− Δz = β1(t, a, x)z(t, A, x) in (0, T ) × (0, A) × Ω

z(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω
z(0, a, x) = k(a, x) in (0, A) × Ω
z(t, 0, x) = 0 in (0, T ) × Ω

(3.10)

where indeed we have set

β1(t, a, x) := β0(T − t, A − a, x), k(a, x) := g(A − a, x). (3.11)

With the above notations, we may write z in the Hilbert basis (ϕj)j

z(t, a, x) =
∞∑

j=1

zj(t, a)ϕj ,
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where zj solves the linear hyperbolic system:⎧⎪⎨⎪⎩
∂zj

∂t
+

∂zj

∂a
+ λjzj = γj(t, a) in (0, T )× (0, A)
zj(0, a) = kj(a) in (0, A)
zj(t, 0) = 0 in (0, T ) .

(3.12)

Here we have set

kj(a) :=
∫

Ω

k(a, x)ϕj(x)dx, (3.13)

γj(t, a) :=
∫

Ω

ϕj(x)β1(t, a, x)z(t, A, x)dx. (3.14)

Now, as it is customary in the study of such linear hyperbolic equations, integrating the transport equation (3.12)
along characteristic lines, we obtain the explicit representation formula:

zj(t, a) =

⎧⎪⎪⎨⎪⎪⎩
e−λjtkj(a − t) +

∫ t

0

e−λjsγj(t − s, a − s)ds, if a ≥ t∫ a

0

e−λjsγj(t − s, a − s)ds, if a < t.
(3.15)

Therefore we have that

zj(t, A) =

⎧⎪⎪⎨⎪⎪⎩
e−λjtkj(A − t) +

∫ t

0

e−λjsγj(t − s, A − s)ds t ≤ A∫ A

0

e−λjsγj(t − s, A − s)ds, t > A.

(3.16)

We observe that since the support of β is contained in [A0, A1] with 0 < A1 < A1 < A (cf. condition (H2)), we
have that the support of β1(t, ·, x) is contained in [A−A1, A−A0] and thus the support of γj(t, ·) is contained
in [A − A1, A − A0] for all j ≥ 1 and t ∈ [0, T ]. Therefore for 0 < s < t < A0 we have γj(t − s, A − s) = 0 and

zj(t, A) = e−λjtkj(A − t) for 0 ≤ t ≤ A0.

For almost all such fixed t ∈ [0, A0], setting

cj := e−λjtkj(A − t),

since k(A−t, ·) ∈ L2(Ω), it follows that for 0 < τ < t the sequence (cj)j≥1 satisfies the assumption of Lemma 3.2.
Since ∑

j≥1

cjϕj = z(t, A, ·) ≡ 0 on ω,

thanks to the above mentioned lemma we conclude that cj = 0 for all j ≥ 1, and finally that

z(t, A, x) = 0 for (t, x) ∈ (0, A0) × Ω. (3.17)

This implies also that for all j ≥ 1 we have cj = 0, that is k(A − t, x) ≡ 0 for (t, x) ∈ (0, A0) × Ω.
Next consider the case A0 ≤ t ≤ A, and consider the coefficients

αj(t) :=
∫ t

0

e−λjs γj(t − s, A − s)ds.
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Since γj(t − s, A − s) = 0 when 0 ≤ s ≤ A0, we may write

αj(t) :=
∫ t

A0

e−λjs γj(t − s, A − s)ds for A0 ≤ t ≤ A.

Noting that for t ∈ [A0, A] we have

|αj(t)| ≤ e−λjA0 (A − A0) ‖z(t, A, ·)‖L2(Ω) ,

upon setting
cj := e−λjt kj(A − t) + αj(t),

one sees that the conditions of Lemma 3.2 are satisfied for any τ ∈ (0, A0) and again since
∑

j≥1 cjϕj =
z(t, A, ·) ≡ 0 on ω, we have that z(t, A, x) ≡ 0 on Ω. Thus we have shown that

z(t, A, x) = 0 for (t, x) ∈ (0, A) × Ω. (3.18)

This in turn implies that γj(t, A) = 0 for all j ≥ 1 and all t ∈ (0, A), and also that k(A − t, x) ≡ 0 for
(t, x) ∈ (0, A) × Ω.

For the case A ≤ t ≤ T , it is enough to apply the same observations to the coefficients

cj := zj(t, A) :=
∫ A

0

e−λjs γj(t − s, A − s)ds =
∫ A

A0

e−λjs γj(t − s, A − s)ds.

Indeed we have again |zj(t, A)| ≤ e−λjA0 (A − A0) ‖z(t, A, ·)‖L2(Ω) and Lemma 3.2 applies.
Finally, the above observations mean that

z(t, A, x) = 0 for (t, x) ∈ (0, T )× Ω, k(a, x) = 0 for (a, x) ∈ (0, A) × Ω.

Consequently z is solution of the homogeneous equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂z

∂t
+

∂z

∂a
− Δz = 0 in (0, T ) × (0, A) × Ω

z(t, a, σ) = 0 on (0, T )× (0, A) × ∂Ω
z(0, a, x) = 0 in (0, A) × Ω
z(t, 0, x) = 0 in (0, T ) × Ω,

that is z ≡ 0 on (0, T )× (0, A) × Ω, and the claim of the Proposition 3.3 is proved. �

Now let J be the functional defined on L2 ((0, A) × Ω) by:

J(g) =
1
2

∫ T

0

∫
ω

|p(t, 0, x)|2dtdx + ε‖g‖ −
∫ A

0

∫
Ω

h(a, x)g(a, x)dadx (3.19)

where for g ∈ L2((0, A) × Ω) given, p solves the adjoint system (3.6)–(3.9).
The following result is now classical.

Proposition 3.4. The functional J is continuous, strictly convex and coercive. More precisely we have:

lim inf
‖g‖→∞

J(g)
‖g‖ ≥ ε, (3.20)
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where for convenience we set ‖g‖ := ‖g‖L2((0,A)×Ω)). In particular

lim
‖g‖→∞

J(g) = +∞

and J achieves its minimum at a unique point ĝ ∈ L2((0, A) × Ω).

Proof. The proof is similar to the one given in Traoré [10] and follows the arguments used by Zuazua in [12].
First observe that, as we mentioned earlier, the operator

g �→
(

p,
∂p

∂t
+

∂p

∂a

)
from L2((0, A) × Ω)) into

L2
(
(0, T )× (0, A); H1

0 (Ω)
)× L2

(
(0, T ) × (0, A); H−1(Ω)

)
is continuous. Therefore the trace p(·, 0, ·) is well-defined (see for instance Langlais [6] or Anita [2]) and depends
continuously on g, so that, the mapping g �→ p(t, 0, x)1ω, considered from L2 ((0, A) × Ω)) into the space
L2 ((0, T )× ω), is linear and continuous, and therefore the functional J is continuous. Let us now prove (3.20).
Consider a sequence (gn)n in L2 ((0, A) × Ω) such that ‖gn‖ → ∞ as n → ∞. We note

ĝn =
gn

‖gn‖ ,

and p̂n the associated solution of (3.6)–(3.9), with g := ĝn. Then,

J(gn)
‖gn‖ =

‖gn‖
2

∫ T

0

∫
ω

|p̂n(t, 0, x)|2dtdx + ε −
∫

(0,A)×Ω

h1ĝndadx. (3.21)

Using the fact that ∫ T

0

∫
ω

|p̂n(t, 0, x)|2dtdx ≥ 0, (3.22)

we obtain either

lim inf
n→∞

∫ T

0

∫
ω

|p̂n(t, 0, x)|2dtdx > 0 (3.23)

or

lim inf
n→∞

∫ T

0

∫
ω

|p̂n(t, 0, x)|2dtdx = 0. (3.24)

In the first case, we get obviously

lim inf
n→∞

J(gn)
‖gn‖ = +∞, (3.25)

and this yields (3.20). In the second case, we extract a subsequence still denoted (ĝn)n such that∫ T

0

∫
ω

|p̂n(t, 0, x)|2dtdx → 0 as n → +∞,

ĝn ⇀ ĝ weakly in L2 ((0, A) × Ω) ,

p̂n ⇀ p̂ weakly in L2
(
(0, T ) × (0, A), H1

0 (Ω)
)
,

∂p̂n

∂t
+

∂p̂n

∂a
⇀

∂p̂

∂t
+

∂p̂

∂a
weakly in L2

(
(0, T )× (0, A), H−1(Ω)

)
.
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Therefore, we get that p̂ is solution to (3.6)–(3.9) and verifies

p̂ (t, 0, x) = 0 a.e. (0, T )× ω.

Using now the unique continuation result of Proposition 3.3, we conclude that

p̂ ≡ 0 a.e. in (0, T )× (0, A) × Ω.

From this we infer that p̂0 ≡ 0 a.e. in (0, A) × Ω, and in particular that ĝ ≡ 0, that is ĝn ⇀ 0, which in turn
implies that ∫ A

0

∫
Ω

h(a, x)ĝn(a, x)dadx → 0,

and finally equality (3.21) yields (3.20). Finally, due to the presence of the quadratic term in J and the unique
continuation result, we note that J is strictly convex, and therefore the minimum of J is achieved at a unique
point. �

Proposition 3.5. Let ĝ be the unique minimizer of J on L2((0, A)×Ω). There exists a control v ∈ L2 ((0, T )× ω)
such that the corresponding solution y of (3.3) verifies (1.5). More precisely, if ε ≥ ‖h‖, one can take v := 0,
while if ε < ‖h‖, one may take v := p̂(t, 0, x)1ω where p̂ is the solution of equation (3.6)–(3.9) with g := ĝε, the
unique minimizer of J given by Proposition 3.4. Moreover, there exists R > 0 independent of Y 0 such that

‖v‖ = ‖p̂(·, 0, ·)1ω‖ ≤ R‖h‖. (3.26)

Proof. First consider the case ε ≥ ‖h‖. Clearly, taking v := 0 one sees that y ≡ 0 and so we have (1.5).
Next consider the case ε < ‖h‖. We know that J has a unique minimizer denoted by ĝε, and using the fact

that J(0) = 0 and ‖h‖ > ε, we infer that there exists g ∈ L2 ((0, A) × Ω) such that J(g) < 0. This implies that
ĝε �= 0. It follows that J is differentiable at ĝ and we have:

J ′(ĝε)g =
∫

(0,T )×ω

p̂p(t, 0, x)dxdt +
ε

‖ĝε‖
∫

(0,A)×Ω

ĝεgdxda −
∫

(0,A)×Ω

h(a, x)g(a, x)dadx = 0.

This gives ∫ T

0

∫
ω

p̂p(t, 0, x)dxdt = − ε

‖ĝε‖
∫ A

0

∫
Ω

ĝεgdadx +
∫ A

0

∫
Ω

h(a, x)g(a, x)dadx. (3.27)

Now consider ŷ the solution of the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ŷ

∂t
+

∂ŷ

∂a
− Δŷ = 0 in (0, T )× (0, A) × Ω

ŷ(t, a, σ) = 0 on (0, T ) × (0, A) × ∂Ω
ŷ(0, a, x) = 0 in (0, A) × Ω
ŷ(t, 0, x) = p̂(t, x)1ω + H(t, x, Y 0)Ŷ in (0, T ) × Ω,

(3.28)

where

Ŷ (t, x) :=
∫ A

0

β̂(a)ŷ(t, a, x)da.

Upon multiplying the first equation in the above system by p and integrating over (0, T ) × (0, A) × Ω, after
some integration by parts and using the fact that

β0(t, a, x) = H(t, x, Y 0)β̂(a),
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we obtain: ∫ T

0

∫
ω

p̂p(t, 0, x)dxdt =
∫ A

0

∫
Ω

ŷ(T, a, x)g(a, x)dxda.

From this, and equality (3.27) we infer that for all g ∈ L2((0, A) × Ω)∫ A

0

∫
Ω

(
ŷ(T, a, x) − h +

ε

‖ĝε‖ ĝε

)
g(a, x)dxda = 0.

This means that
ŷ(T, a, x) − h = − ε

‖ĝε‖ ĝε,

an equality which implies (1.5).
Let us prove now (3.26). It suffices to prove that the minimizer ĝ is uniformly bounded with respect to the

function Y 0. Taking g = ĝε in (3.27) we get∫ T

0

∫
ω

|p̂(t, 0, x)|2dxdt +
ε

‖ĝε‖
∫ A

0

∫
Ω

|ĝε|2dxda =
∫ A

0

∫
Ω

h(a, x)ĝεdadx.

This gives

J(ĝ) = −1
2

∫ A

0

∫ T

0

∫
ω

|p̂(t, 0, x)|2dxdt. (3.29)

Now, we argue by contradiction. Indeed let
(
Y 0

n

) ⊂ L2 ((0, T ) × Ω) be a sequence such that the sequence of
minimizers ĝn of Jn verifies

lim
n→+∞ ‖ĝn‖ = ∞,

with Jn being

Jn(g) :=
1
2

∫ T

0

∫
ω

|pn(t, 0, x)|2dtdx + ε‖g‖ −
∫ A

0

∫
Ω

h(a, x)g(a, x)dadx

where pn solves (3.6)–(3.9) with βn
0 := H(Y 0

n )β instead of β0. We set g̃n := ĝn/‖ĝn‖ and p̃n := p̂n/‖ĝn‖. Then
we get:

Jn(ĝn)
‖ĝn‖ =

1
2
‖ĝn‖

∫ T

0

∫
ω

|p̃n(t, 0, x)|2dtdx + ε −
∫ A

0

∫
Ω

h(a, x)g̃n(a, x)dadx.

Since Jn(ĝn) < 0, using the Cauchy-Schwarz inequality it follows that:

1
2
‖ĝn‖

∫ T

0

∫
ω

|p̃n(t, 0, x)|2dtdx + ε ≤ ‖h‖.

Now, since ‖ĝn‖ → +∞, this implies

lim
n→∞

∫ T

0

∫
ω

|p̃n(t, 0, x)|2dtdx = 0.

On the one hand as the sequence (g̃n)n is bounded, we infer that there exists subsequences still denoted p̃n, βn, g̃n

that converge weakly respectively to p̃, β, g̃. On the other hand (p̃, β, g̃) verifies (3.6)–(3.9), and using the fact
that p̃(t, 0, x) = 0 in (0, T ) × Ω we deduce from the Proposition 3.3 that p̃ ≡ 0. Consequently the sequence
(g̃n)n converges weakly to zero in L2 ((0, T )× Ω), and from (3.29) and the fact that p̂n = ‖ĝn‖p̃n we get that:

J(ĝn)
‖ĝn‖ = −1

2
‖ĝn‖

∫ T

0

∫
ω

|p̃n(t, 0, x)|2dxdt ≤ 0. (3.30)
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On the other hand by the very definition of the functional J we have:

J(ĝn)
‖ĝn‖ =

1
2
‖ĝn‖

∫ T

0

∫
ω

|p̃n(t, 0, x)|2dxdt + ε −
∫ A

0

∫
Ω

h(a, x)g̃ndadx.

Since g̃n converges weakly to zero, it follows that

lim inf
n→+∞

J(ĝn)
‖ĝn‖ ≥ ε.

We conclude by observing that this is in contradiction with (3.30).
Therefore this contradiction shows that the sequence (ĝn)n is bounded, that is the minimizer ĝ is uniformly

bounded with respect to the function Y 0. This means that there exists R0 > 0 such that for all Y 0 ∈
L2 ((0, T )× Ω) we have ‖ĝ‖ ≤ R0. Since J(ĝ) < 0, then the Cauchy-Schwarz inequality implies

1
2

∫ A

0

∫ T

0

∫
ω

|p̂(t, 0, x)|2dxdt ≤ R0‖h‖

and the proof is complete. �

4. Proof of the main result

We examine only the case ‖h‖ > ε, since if ‖h‖ ≤ ε one may take v = 0 in order to get (1.5).
Let us denote by X := L2 ((0, T )× Ω). Recall that for Y 0 ∈ X the linear equation (3.3) has a unique

solution y and that we have defined Y in (3.4) as being the integral of y over (0, A). We shall denote by K(Y 0)
the set defined by

K(Y 0) :=
{
Y as in (3.4); (y, v) as in (3.3), (1.5), v ∈ L2((0, T )× ω)

}
. (4.1)

The goal is now to prove that the multivalued mapping K has a fixed point, that is that there exists Y such
that Y ∈ K(Y ). This will be a consequence of the following version of the Kakutani fixed point theorem, due
to Ky Fan and I. Glicksberg (see e.g. Aubin [3], and Zeidler’s book [11], Sect. 77.8; in particular in Chap. 77 of
the latter reference a very nice account of various forms of fixed point theorems are given). So we shall prove:

Theorem 4.1 (Kakutani-Fan-Glicksberg fixed point theorem). Let X be a reflexive Banach space and K :
X −→ 2X a multivalued mapping which satisfies the following conditions:

(1) For all Y 0 ∈ X the set K(Y 0) is a nonempty convex closed subset of X.
(2) There exists a compact set Xc such that K(Xc) ⊂ Xc.
(3) For all Z ∈ X the mapping

Y 0 �→ sup
P∈K(Y 0)

∫ T

0

∫
Ω

Z(t, x)P (t, x)dxdt

is upper semicontinuous.
Then the mapping K has at least one fixed point, that is there exists Y ∈ X such that Y ∈ K(Y ).

We begin by proving the first property of Theorem 4.1.

Lemma 4.2 (Property (1) of Thm. 4.1). With the above notations, for all Y 0 ∈ X the set K(Y 0) is a non
empty convex closed subset of X.
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Proof. Let Y 0 ∈ X . Using the result of the previous section we infer that K(Y 0) is nonempty, and it is clear
that the mapping Y 0 �→ y being affine, thanks to its very definition, the set K(Y 0) is convex. In order to prove
that K(Y 0) is closed, let (Y n)n≥1 be a sequence of K(Y 0) converging strongly to Y . We have to check that
Y ∈ K(Y 0). Clearly, thanks to Proposition 3.5, for all n there exists a pair (yn, vn) that solves (3.3) such that

(yn, vn) satisfies (1.5), Y n(t, x) =
∫ A

0

β(a)yn(t, a, x)da, ‖vn‖ ≤ R‖h‖.

Multiplying (3.3) by yn and integrating by parts, we get

‖∇yn‖2 ≤ ‖vn‖2 + ‖Y n‖2. (4.2)

Therefore the sequence (yn)n is bounded in L2 ((0, T ) × (0, A) × Ω). Consequently, we can extract subsequences
also indexed by n such that

yn ⇀ y in L2 ((0, T )× (0, A) × Ω)
vn ⇀ v in L2 ((0, T )× ω)

Y n ⇀

∫ A

0

β(a)y(t, a, x)da in L2 ((0, T )× Ω) .

Hence, we conclude that the pair (y, v) solves (3.3) and verifies (3.26) as well as condition (1.5). This means
that Y ∈ K(Y 0), and therefore K(Y 0) is closed. �

The following lemma is straightforward:

Lemma 4.3. Let M be given by (3.2) and R > 0 fixed. There exists a constant C > 0 such that if H̃ ∈
L∞((0, T ) × Ω) with ‖H̃‖∞ ≤ M , and v ∈ L2((0, T ) × ω) is such that ‖v‖L2 ≤ R, a function y such that

y ∈ L2((0, T )× (0, A); H1
0 (Ω)),

∂y

∂t
+

∂y

∂a
∈ L2((0, T )× ((0, A)); H−1(Ω))

and satisfying the equation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
+

∂y

∂a
− Δy = 0 in (0, T ) × (0, A) × Ω

y(t, a, σ) = 0 on (0, T ) × (0, A) × ∂Ω
y(0, a, x) = 0 in (0, A) × Ω

y(t, 0, x) = v(t, x)1ω + H̃(t, x)
∫ A

0

β(a)y(t, a, x)da in (0, T )× Ω,

(4.3)

then one has

Y (t, x) :=
∫ A

0

β(a)y(t, a, x)da satisfies ‖Y ‖L2((0,T )×Ω) ≤ C. (4.4)

Next, in order to prove the second property needed in the application of Kakutani-Fan-Glicksberg fixed point
theorem, we show the following lemma.

Lemma 4.4 (Property (2) of Thm. 4.1). There exists a compact set Xc such that K(Xc) ⊂ Xc.

Proof. Denote by Xc the set of functions Y :=
∫ A

0 βyda, where y is such that there exist v ∈ L2 ((0, T )× ω)
verifying (3.26) and H̃ ∈ L∞ ((0, T )× Ω) such that ‖H̃n‖∞ ≤ M and moreover, the pair (y, v) solves the sys-
tem (4.3). Note that by construction, for any Y 0 ∈ L2((0, T )×Ω) we have K(Y 0) ⊂ Xc, since ‖H(Y 0)‖∞ ≤ M .
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Therefore, since by Lemma 4.3 we may infer that Xc is bounded, we need only to prove that Xc is relatively
compact.

Let (yn)n be a sequence such that Y n :=
∫ A

0 βynda is a sequence belonging to Xc: we have to show that (Y n)n

contains a convergent subsequence. We begin by noting that there exists vn and H̃n such that if ‖H̃n‖∞ ≤ M ,
while vn verifies (3.26) and yn satisfies the system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂yn

∂t
+

∂yn

∂a
− Δyn = 0 in (0, T )× (0, A) × Ω

yn(t, a, σ) = 0 on (0, T ) × (0, A) × ∂Ω
yn(0, a, x) = 0 in (0, A) × Ω
yn(t, 0, x) = vn(t, x)1ω + H̃nY n in (0, T ) × Ω.

(4.5)

Multiplying (4.5) by β, integrating this on (0, A) and using the assumptions on β we obtain that Y n solves the
system: ⎧⎪⎪⎨⎪⎪⎩

∂Y n

∂t
− ΔY n =

∫ A

0

yn(t, a, x)β′(a)da in (0, T ) × Ω

Y n(t, σ) = 0 on (0, T )× ∂Ω
Y n(0, x) = 0 in Ω.

(4.6)

The boundedness of (vn)n and (Y n)n implies that (
∫ A

0
ynβ′(a)da)n is bounded in L2 ((0, T )× Ω) and that

(∇Y n)n is bounded in (L2((0, T ) × Ω))N . Consequently, (∂Y n/∂t)n is bounded in L2((0, T ); H−1(Ω)) and
(Y n)n is bounded in L2((0, T ); H1

0 (Ω)). Therefore, using a classical result due to Aubin and Lions, we infer
that (Y n)n is relatively compact in L2((0, T ) × Ω). Finally we can conclude that there exist subsequences still
indexed by n such that:

yn ⇀ y in L2
(
(0, T )× (0, A); H1

0 (Ω)
)

Y n → Y =
∫ A

0 βyda in X and a.e. on (0, T ) × Ω

vn ⇀ v in L2 ((0, T )× ω)

H̃n → H̃ in L∞ ((0, T ) × Ω)weak ∗ .

Therefore we infer that
H̃n Y n ⇀ H̃ Y in L1 ((0, T )× Ω) .

Consequently, we may observe that the pair (y, v) solves (4.3) and (3.26), and this shows that Xc is relatively
compact in X , thus Lemma 4.4 is proved. (Actually this shows that the set K(Y 0) is compact for all Y 0 ∈ X.)

�

It remains now to prove the following lemma which states the third property needed in the application of
Kakutani-Fan-Glicksberg fixed point theorem.

Lemma 4.5 (Property (3) of Thm. 4.1). Let Z ∈ X be fixed and denote by Y �→ K̂(Y ) the mapping defined by

K̂(Y ) := sup
P∈K(Y )

∫ T

0

∫
Ω

Z(t, x)P (t, x)dxdt.

Then K̂ is upper semicontinuous.

Proof. Consider a sequence (Y n) that converges strongly to Y in X . We must prove that

lim sup
n→+∞

K̂(Y n) ≤ K̂(Y ).
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Since each set K(Y n) is compact, we infer that there exists Pn ∈ K(Y n) such that

K̂(Y n) =
∫ A

0

∫
Ω

Z(t, x)Pn(t, x)dxdt.

Note that, at the cost of extracting a subsequence, without loss of generality (thanks to a result which is the par-
tial converse of Lebesgue’s dominated convergence theorem) we may assume that there exists Y∗ ∈ L2((0, T )×Ω)
such that

Y n(t, x) → Y (t, x) and |Y n(t, x)| ≤ Y∗(t, x) a.e. on (0, T ) × Ω.

Since H is continuous and bounded, this implies in particular that H(Y n) → H(Y ) almost everywhere and in
Lr((0, T ) × Ω) for all r < ∞. Now, as Pn ∈ K(Y n), we know that there exists a pair (zn, vn) that solves:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂zn

∂t
+

∂zn

∂a
− Δzn = 0 in (0, T )× (0, A) × Ω

zn(t, a, σ) = 0 on (0, T ) × (0, A) × ∂Ω
zn(0, a, x) = 0 in (0, A) × Ω

zn(t, 0, x) = vn(t, x)1ω + H(Y n)
∫ A

0

βznda in (0, T )× Ω,

(4.7)

and the pair (zn, vn) verifies also (3.26) and (1.5), while Pn =
∫ A

0 β(a)znda. Therefore, since Xc is relatively
compact and Pn ∈ Xc, up to extraction of subsequences, we have that:

zn ⇀ z in L2
(
(0, T ) × (0, A); H1

0 (Ω)
)

vn ⇀ v in L2 ((0, T )× ω)
Y n ⇀ Y a.e. and in L2 ((0, T ) × Ω)

H(Y n) → H(Y ) a.e. and in Lr((0, T )× Ω)
Pn → P a.e. and in X

H(Y n)Pn → H(Y )P a.e. and in L2 ((0, T ) × Ω) .

Therefore we may infer that the pair (z, v) also verifies equation (4.7) with H(Y ) instead of H(Y n) and verifies
also (3.26) and (1.5). Consequently we have P =

∫ A

0
βzda ∈ K(Y ) and

lim sup
n→+∞

K̂(Y n) = lim
n→+∞

∫ A

0

∫
Ω

Z(t, x)Pn(t, x)dxdt

=
∫ A

0

∫
Ω

Z(t, x)P (t, x)dxdt.

Finally, since P ∈ K(Y ), one deduces that

lim sup
n→+∞

K̂(Y n) ≤ K̂(Y ),

and this ends the proof of the lemma. �
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5. Conclusion

In Lemmas 4.2, 4.4 and 4.5 we have shown that the mapping K defined by (4.1) satisfies the conditions
required by Kakutani-Fan-Glicksberg Theorem 4.1: it follows that K has at least one fixed point, that is there
exists

(y, v) ∈ L2((0, T ) × (0, A); H1
0 (Ω)) × L2((0, T )× ω)

satisfying (3.3) and (1.5) such that Y :=
∫ A

0
β(a)y(·, a, ·)da ∈ K(Y ). This means precisely that there exists a pair

(y, v) such that y solves the system (3.3), with y(t, 0, x) = v1ω + F (t, x, y) and verifies also the condition (1.5),
that is ‖y(T, ., .)−h1‖ ≤ ε. The proof of our main result is over. �

References

[1] B.E. Ainseba and M. Langlais, Sur un problème de contrôle d’une population structurée en âge et en espace. C. R. Acad. Sci.
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