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MAXIMUM PRINCIPLE FOR FORWARD-BACKWARD DOUBLY STOCHASTIC
CONTROL SYSTEMS AND APPLICATIONS*

LIANGQUAN ZHANG'? AND YUFENG SHI!

Abstract. The maximum principle for optimal control problems of fully coupled forward-backward
doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the
assumptions that the diffusion coefficients do not contain the control variable, but the control domain
need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate
the optimal control problems of a class of stochastic partial differential equations (SPDEs in short).
And as an example of the SMP, we solve a kind of forward-backward doubly stochastic linear quadratic
optimal control problems as well. In the last section, we use the solution of FBDSDES to get the explicit
form of the optimal control for linear quadratic stochastic optimal control problem and open-loop Nash
equilibrium point for nonzero sum stochastic differential games problem.
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1. INTRODUCTION

It is well known that optimal control problem is one of the central themes of control science. The necessary
conditions of optimal problem were established for deterministic control system by Pontryagin [24] in the 1950’s
and 1960’s. Since then, a lot of work has been done on the forward stochastic system such as Kushner [13],
Bismut [5], Bensoussan [2,3], Haussmann [10,11] and Peng [20], etc.

Peng [20] studied the following type of stochastic optimal control problem. Minimize a cost function

T
J(U()) :E/O l(l’t,vt)dt+E(hT),
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subject to
(1.1)

over an admissible control domain which need not be convex, and the diffusion coefficients contain the control
variable. In his paper, by spike variational method and the second order adjoint equations, Peng [20] obtained a
general stochastic maximum principle for the above optimal control problem. It was just the adjoint equations
in stochastic optimal control problems that motivated the famous theory of backward stochastic differential
equations (BSDEs in short) (see [18]). Later Peng [21] studied a stochastic optimal control problem where state
variables are described by the system of forward and backward SDEs, that is

dzy = g (t, 2, v) dt + o (t, 24, v¢) A By,
Tro =,

dxt = f (t,$t7vt)dt +o (t,ft,’l]t)th,
o=,

1.2
dyt =g (ta Tt, vt) dt + thWt, ( )
yr =Y,

where z and y are given deterministic constants. The optimal control problem is to minimize the cost function

T
J(v)) =E /0 L(t e, ye,ve) dt + h(zr) + 9 (Yo) | » (1.1)

over an admissible control domain which is convex. Xu [28] studied the following non-fully coupled forward-
backward stochastic control system

d$t = f (t,.ﬁt,’l)t) dt +o (t,.ﬁt)th,
Tro =2,

dyt =g (taxtvyt; 2ty vt) dt + thWt;
yr = h(zr).

(1.3)

The optimal control problem is to minimize the cost function

J (v()) = Ev (o),

over U,q, but the control domain is non-convex. Wu [26] firstly gave the maximum principle for optimal control
problem of fully coupled forward-backward stochastic system

day = f (@, ye, 2e,v0) At 4 0 (t, 24, ye, 24, v¢) d By,
dys = —g (t, 24, yt, 2¢, v¢) At + 2,d By, (1.4)
o =, yr = ga

where € is a random variable and the cost function

T
J(U()) =E /O L(t7xt7ytazt7vt)dt+q)($T)+h(y0)

The optimal control problem is to minimize the cost function J (v(,)) over an admissible control domain which
is convex. Ji and Zhou [12] obtained a maximum principle for stochastic optimal control of non-fully coupled
forward-backward stochastic system with terminal state constraints. Shi and Wu [25] studied the maximum
principle for fully coupled forward-backward stochastic system

dxy = b(t, 24, yt, 2¢,v¢) At + 0 (8, 04, Y, 2¢) A By,
dyt = 7f (t,mt,yt,zt,vt) dt+thBt, (15)
Xo =T, yT:h(xT)a
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and the cost function is

J (U(.)) =E

T
/ L(t, e, yt, 2e,v¢) At + @ (w7) + ’Y(yo)] .
0

The control domain is non-convex but the forward diffusion does not contain the control variable. For more
details in this field, see Yong and Zhou [29].

In order to provide a probabilistic interpretation for the solutions of a class of semilinear stochastic partial
differential equations (SPDEs in short), Pardoux and Peng [19] introduced the following backward doubly
stochastic differential equation (BDSDE in short):

T T T
Y, =¢ +/ f(s,Ys, Zs)ds +/ g(s,Ys, Z)dB, f/ ZdW,, 0<t<T. (1.6)
t t t

Note that the integral with respect to {B;} is a “backward It6 integral” and the integral with respect to {W,} is
a standard forward It6 integral. These two types of integrals are particular cases of the It6-Skorohod integral (for
details see [16]). Peng and Shi [22] introduced a type of time-symmetric forward-backward stochastic differential
equations, i.e., so-called fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in
short):

Yo =2+ [y [ (5,5, Yer 26, Zs) ds + [ g (5,Ys, Ye, 25, Zs) AW, — [ z,d By,
(1.7)
Ye=h(yr) + [ F(s,ys, Ve, 2, Zs) ds + [} G (5,5, Ve, 25, Z5) dBs + [ Z,dW.

In FBDSDEs (1.7), the forward equation is “forward” with respect to a standard stochastic integral dW4,
as well as “backward” with respect to a backward stochastic integral &Bt; the coupled “backward equation”
is “forward” under the backward stochastic integral dB, and “backward” under the forward one. In other
words, both the forward equation and the backward one are types of BDSDE (1.6) with different directions of
stochastic integrals. So (1.7) provides a very general framework of fully coupled forward-backward stochastic
systems, which is more extensive than the one in [23]. Peng and Shi [22] proved the existence and uniqueness of
solutions to FBDSDEs (1.7) with arbitrarily fixed time duration under some monotone assumptions. FBDSDEs
(1.7) can provide a probabilistic interpretation for the solutions of a class of quasilinear SPDEs.

As we have known, stochastic control problem of the SPDEs arising from partial observation control has
been studied by Mortensen [14], using a dynamic programming approach, and subsequently by Bensoussan,
using a maximum principle method. See [4,15] and the references therein for more information. Our approach
differs from the one of Bensoussan. More precisely, we relate the FBDSDEs to one kind of SPDEs with control
variables where the control systems of SPDEs can be transformed to the relevant control systems of FBDSDEs.
To our knowledge, this is the first time to treat the optimal control problems of SPDEs from a new perspective
of FBDSDE:s. It is worth mentioning that the quasilinear SPDEs in [17] @ksendal considered can just be related
to our partially coupled FBDSDEs.

Besides, in Section 6 we investigate the nonzero sum stochastic differential game problem. This problem
have been considered by Friedman [8], Bensoussan [1] and Eisele [7]. For stochastic case Hamadene [9] and
Wu [27] (for more information see references therein) showed existence result of Nash equilibrium point under
some assumptions, respectively. Here, we extend their result to doubly stochastic case in which we can regard
the backward filtration as the disturbed information come from outside the “control system”.

In this paper, we consider the following fully coupled forward-backward doubly stochastic control system

Yt = + f(f f (S,ys,Ys,Zs, Zsavs) ds + f(fg(says;}/;azs; Zs) dWs - f(f ZsaBs;
i (1.8)
Ye=h(yr)+ [, F (5,96, Yo, 26, Zo,05) ds + [, G (5,95, Vs, 26, Z) ABs — [, Z,dW,.
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Our optimal control problem is to minimize the cost function:

T
J(U()) =E / l(t,yt,}/t,Zt,Zt,’Ut)dt+(I)(yT)+’7(Yb)
0

over an admissible control domain which need not be convex. It is obvious that (1.8) covers (1.3) and (1.5),
50 (1.8) can describe more intricate control systems. As for the fully coupled forward-backward doubly stochastic
control systems such as (1.8) whose diffusion coefficients contain the control variables, this issue will be carried
out in our future publications.

The notable difficulties to obtain the maximum principles for the fully coupled forward-backward doubly
stochastic control systems within non-convex control domains are how to use the spike variational method to
get variational equations with enough high order estimates and how to use the duality technique to obtain the
adjoint equations. On account of the quadruple of variables in the FBDSDESs, we can not directly apply the
methods used in [25,26,28]. In this paper, by virtue of the results of FBDSDEs in [22], we can ensure the
existence and uniqueness of the solutions for the adjoint FBDSDEs which are obtained by applying the duality
technique to the variational equations. Besides, we apply the technique of FBDSDEs to get the enough high
order estimates for the solutions of the variational equations.

From the maximum principle for optimal control problems of FBDSDEs obtained in this paper, we can
find the equations satisfied by Nash equilibrium points for linear quadratic nonzero sum doubly stochastic
differential games problems. As an application, we study a linear quadratic nonzero sum doubly stochastic
differential games problem in this paper.

This paper is organized as follows. In Section 2, we state the problems and some assumptions. In Section 3,
we study the variational equations and variational inequalities. In Section 4, a stochastic maximum principle in
global form is obtained, subsequently, an example of this kind of control problems is given in this section. As
an application, we study the optimal control problem of a kind of SPDEs with control variable by the approach
of FBDSDESs in Section 5. Lastly, we give the explicit form of Nash equilibrium point for a kind of stochastic
differential game problem.

For the simplicity of notations, we only consider the case where both y and Y are one-dimensional, and the
control v is also one-dimensional. While in order to give the general results, we consider the multi-dimensional
case in Section 6.

2. STATEMENT OF THE PROBLEM

Let (92, F, P) be a complete probability space, and [0,7] be a given time duration throughout this paper.
Let {W;; 0<t¢<T} and {B;; 0<t<T} be two mutually independent standard Brownian motions defined
on (Q, F, P), with values respectively in R? and in R!. Let N denote the class of P-null elements of F. For
each t € [0, 7], we define

Fe=FVVF
where B}V = NV o {W, — Wp; 0<r <t} ffT = NVao{B,—By;; t<r<T}. Note that the collection
{F:, t € [0,T]} is neither increasing nor decreasing, and it does not constitute a classical filtration. We introduce
the following:

Definition 2.1. A stochastic process X = {X;; ¢ > 0} is called F-progressively measurable, if for any ¢ > 0,
X on Q x [0, 1] is measurable with respect to (F}" x B([0,1])) vV (FZ, x B([t,T])).

Let M? (0, T; R™) denote the space of all (classes of dP®dt a.e. equal) R"-valued F;-progressively measurable
stochastic processes {vy; ¢ € [0,T]} which satisfy

T
E/ |vg|* dt < oo.
0
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Obviously M? (0, T;R™) is a Hilbert space. For a given u € M? (O,T;Rd) and v € M? (O,T;Rl), one can
define the (standard) forward It6’s integral fo usdWs and the backward It6’s integral f r vSaBs. They are both
in M?(0,T;R) (see [19] for details). For the simplicity of notations, we only treat one dimension case. For
multi-dimensional case, the results are the same.

Let L2 (2, Fr, P;R) denote the space of all Fr-measurable R-valued random variable ¢ satisfying E [¢]* < co.
Under this framework, we consider the following forward-backward doubly stochastic control system.

dyt = f (t7yt7Y;5,Zt, Zt7vt)dt +g (tath;:th, Zt) dVVf - Zta-Bt;
dYy = —F (t,yt, Yo, 2t, Ze,v) dt — G (t,ys, Yy, 20, Z4) A By + ZidW4, (2.1)
Yo = T, Yr =h(yr), te 0,77,

where (y(.),Y(.),z(.), Z(_),U(.)) €R xR x R'xR? x R, z € R is a given constant, T" > 0,

0,7T]xRxRxR'xR?xR —R,

:[0,T]xRxRxR' xR‘xR — R,
0, T]x RxRxR'xRYx R — R/,
0,7 x Rx RxR' xR xR — R,
:R— R.

?

S

Let U be a nonempty subset of R. We define the admissible control set
Upg = {v(.) e M?*(0,T;R); vy €U, 0<t<T, ae., a.s.}.

Our optimal control problem is to minimize the cost function:

T
J(U()) =E / l(taytvmvztaztvvt) dt+q)(yT)+7(Y0) (22)
0

over Uyq, where

1:0,T]x RxRxR'xR?xR — R,
P:R—R,
v:R—R.

An admissible control u(.y is called an optimal control if it attains the minimum over U,q. That is to say, we
want to find a u(.y such that
J(uy) = inf  J(vgy).
(uy) =, inf T (vey)
(2.1) is called the state equation, the solution (y;, Y%, z¢, Z¢) corresponding to uy.y is called the optimal trajectory.
Next we will give some notations:

N w Ne
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We use the usual inner product (-,-) and Euclidean norm |-| in R, R! and R?. All the equalities and inequalities
mentioned in this paper are in the sense of dt ® dP almost surely on [0, 7] x Q. We assume that:

(H1) For each ¢ € R*1HHd A (. () is an F;-measurable process defined on [0, 7] with A (-,0) € M?(0,T;
RI+1++d)

(H2) A(t,¢) and h (y) satisfy Lipschitz conditions: there exists a constant k& > 0, such that

FA@OA@fﬂﬁkkﬂaVQEGR”HmﬂWGWEL
|h(y) —h @I <kly—gl, Yy, §€R.

The following monotonic conditions introduced in [22] are the main assumptions in this paper:
(A=At =) < —nlc—C[,

(H3) V¢ =(y,Y,2,7), (= (5,Y,% Z) e Rx Rx R'xR%, VWt € (0,77,
(h(y)=h(y),y—y) 20, Vy, y € R,

or
(H3)’ V¢ =(y,Y,2,7), (= (5,Y,% Z) e Rx Rx R'xRY, Wt € 0,77,

where p is a positive constant.

Proposition 2.2. For any given admissible control vy, we assume (H1), (H2) and (H3) (or (H1), (H2) and
(H3)’) hold. Then FBDSDE (2.1) has a unique solution (ys, Yy, z¢, Z;) € M?* (0, T; R} 1) |

The proof is referred to [22]. We need a farther assumption as follows:

(H4) F, f, G, g, h, I, ®, v are continuously differentiable with respect to (y,Y,2,Z), y and Y. They and all
their derivatives are bounded by a constant C'.

Lastly, we need the following extension of It6’s formula (for details see [19]).

Proposition 2.3. Let
a € S%(0,T;RY), pe M?(0,T;R"), v M?(0,T;R*"), 6 € M?(0,T;R"9)
satisfy:
t t t
atzozo—l—/ﬁsds—l—/vsst—i—/édes, 0<t<T.
0 0 0

Then

t

t t t t
|0¢t|2 - |040|2 + 2/ (as, Bs) ds + 2/ (as,’ysst> + 2/ (as, 65dWy) _/ |%|2 ds —|—/ |(5$|2 ds,
0 0 0 0 0

t t t
E|o|* = Elag|* + QE/ (as, Bs) ds — E/ |ys]? ds + E/ 107 ds.
0 0 0
Here S? (0, T Rk) denotes the space of (classes of dP®dt a.e. equal) all Fy-progressively measurable k-dimensio-
nal processes v with

E( sup |vt|2) < 0.

0<t<T
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3. VARIATIONAL EQUATIONS AND VARIATIONAL INEQUALITIES

Suppose (yt, Y2, z¢, Zt, ut) is the solution to our optimal control problem. We introduce the following spike
variational control:
v, T<t<T+¢,
uj =
uy, otherwise,

where € > 0 is sufficiently small, 7 € [0, T]. v is an arbitrary F,-measurable random variable with values in U,

0 <t<T,and sup |v(w)| < oco. Let (y£,YF, 25, Z5) be the trajectory of the control system (2.1) corresponding
weN
to the control wug.

For convenience, we use the following notations in this paper:

—y = ‘:‘y (tayt7Y;;Zt;Zt7ut)7

[
<
|

=y (Ui) - Ey (taytvnazta Ztaui)a

(ta Yt, Y%; Zt, Ztaut) ’

[1]
B
I
[1]

E (Uf) =E (ta Yt, Y%a Zts Ztaug) )
etc.,

where Z = f, F, g, G, respectively. We introduce the following variational equations:

dyb = [fyut + YV + fozd + 22} + f(u5) — f (up)] dt
+ vyl +ovYy + 9220 +922]] AW, — 2B,

y =0
0 ; (3.1)
AV} = = [Fyy} + Fy Y} + Fozf + FzZ} + F (u§) — F (uy)] dt
— [Gyyt + GyY + Gz} + Gz 2} By + Z1dW,,

Yi = hy (yr) yr-

Owing to (H4), it is easy to check that the variational equation (3.1) same as (2.1), also satisfies (H1), (H2)
and (H3). Thus by Proposition 2.2, there exists a unique solution (ytl, Y 2}, Ztl) ER xR xR! de, 0<t<T,

satisfying (3.1). The variational inequalities can be derived from the fact J (uf)) —J (u(,)) > 0. The following

lemmas play important roles to establish the inequalities.

Lemma 3.1. We assume (H1)—(H4) hold. Then we have

T

E/ lyt” dt < Ce, (3.2)
OT i

E/ |V dt < Ce, (3.3)
OT i

E/ |2¢|” dt < Ce, (3.4)
OT i

E/ |Z}|" dt < Ce, (3.5)
0

where C' > 0 is some constant.
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Proof. Using the Itd’s formula to (y}, ;') it follows that

T
E (\y%IQ hy (yT)) :E/O (fyyt + fy Y + fozl + f220) Yidt

T
/O Fyyt + FyY + F.2} + FzZ}) y, dt

*ﬂ

E/ Gyyi + Gy Y] + G.z} + Gz Z}) z/dt
0

T
+E/ gyt +ovYy + 9.2 +9z2)) Z}dt
0
T
+E/ (ur)) Yy dt
0
/ F (u)) yldt. (3.6)

Since (3.1) satisfies the monotonic condition (H3), it is easy to see that
2 r 2 2 2 2
(o i (o)) + 0B [ (Jol o+ [0 = |20 ae

T T
SEA UW@*HWDWM*EA (F (1) — F (ug)) yldt

1 T T
<28 [ ) - Swfa+ie [ v P
Ko Jo 4 Jo
1 r - 2 Iz r 112
+—-E |F (uf) — F (ug)|"dt + =E ly¢ |~ dt. (3.7)
Ko Jo 4 Jo
From (H4) and (3.7), it is easy to know that (3.2)—(3.5) hold. The proof is complete. O

However, the order of the estimate for (yf,Y;!, 2{, Z}) is too low to get the variational inequalities. We need
to give some more elaborate estimates. For that, we firstly give the following lemma.

Lemma 3.2. Assuming (H1)—(H4) hold, then we have

sup (E |yt1|2> < Ce, (3.8)
0<t<T

sup (E }Yt1|2) < Ce. (3.9)
0<t<T

Proof. Squaring both sides of
t t
vt +/ 2, dBs = / (fuys + Y+ fozg + f2 25 + f (ul) = f (us)) ds
0 0

t
+/ (9yyt + gy Y} + g.21 + g22)) AW,
0

t t t
E [ytl/ z;st} =E [Eﬂ (ytl/ z;&Bsﬂ =E [ytlEff (/ z;&Bsﬂ =0,
0 0 0

noting that
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we have

t t
E@W+EA\%%M:ELAUW&Hﬂﬁ+ﬁé+hﬂ+fw97ﬂ%»®

2
t
+/ (gyys +9vYS + g220 + g2 Z}) dWs]
0

t

t 2
C [ [l + 2P+ a2 22 ase 0B ([ 100 = £ upa)
0 0

IN

Thus

By the similar argument, we can have

The proof is complete. (I
Lemma 3.3. Assuming (H1)—(H4) hold, then we have

E( sup ‘ytlf) < Ce, (3.10)

0<t<T

E< sup |Ytl|2> < Ce. (3.11)
0<t<T

Proof. Squaring both sides of

t
W= [k B2 sk fa2h ) — § () s
0
t t
+/ (gyy§+gy§21+9z23+gzzi)dws*/ z.dBs,
0 0

we have

Wi < 3 ( [ Gt P+ R+ 121 £ )~ ] ()

N—

t 2
+3 </ (gyys + 9y Y + gz24 + 922y) dW5>
0

t
< 3t/ (Fyul + Fy Y2+ fozd o+ f2Z0 4 f (u) — £ (us)* ds
0

t 2 T T 2
+3 (/ (9yys + 9vY) + g.2) + 922)) dWs) +3 (/ zldB, —/ z;st>
0 0 t

t
<0 [ [P+ B2 122 1 ) = 7 ] s

t 2 T 2 T 2
+3 </ (gyyt + gvY! + g2l + g22)) dW5> + 6 </ zsldB5> +6 </ zgd35> ,
0 0 t
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then
1|2 T 112 112 112 112 2 4 15 ’
sup |yt‘ § C/O {|ys| + ‘Ys | + ‘Zs| + |Zs| + |f (ui) - f(u5)| }d5+6 /O stBS

t 2 T
+ 3 sup (/ (gyy2 + gy Vi + go2l + g22}) dWS) +3 sup (/ z;st>
0 t

0<t<T 0<t<T

T T 2
<cf [|y§|2+\Y;|2+\z;|2+|Z;|2+|f<u§>f(us>|2}ds+6</ z;aBs>
0 0

2 T 2
) +3 ( sup / zslst ) ,
0<t<T |J¢

where C' > 0 is some constant. Hereafter, C' will be some generic constant, which can be different from line to
line. Taking expectation, by B-D-G inequality and Holder inequality, it follows that

t
+3 ( sup / (9u¥s + 9y Y + 922 +9225) AW,
0

0<t<T

T T
E(sup \yélQ)SOE/ [+ Y27 4 a2 + 128 17 ) = £ )] ds 0B [ Ja37 s
0<t<T 0 0

T T
+CE/ |gyyi+ngsl+gz23+gzZi}2dS+CE/ |2 ds
0 0
T T
<CE [ [l + [V + 2 + |22 ds+ CB [ 1f (uf) - F ()P
0 0

From Lemma 3.1, (3.10) holds. By the similar argument, we can prove (3.11). Squaring both sides of

T

Y = hy (yr) yr + / (Fyyl + By Y} + F.2l + FzZ) + F (uf) — F (uy)) ds

t

T T
+ / (Gyyt + Gy Y} + G2l + Gz2)) dB, - / Zlaws,
t t

it follows that

2
T
V* <5 |hy (yr)yb|* +5 (/ (Fyyl + FyY) + Fozl + Fy Zh + F (uZ) — F (uy)) ds)
t

T 2 T 2 ¢
+5 (/ (Gyys + GyY,] + G.2l + Gz Z}) &B5> +5 (/ Zj,dWs> +5 </ Zj,dWs)
t 0 0

2

Thus

T 2 t 2
sup [V} < 5|hy (yr) yh|* +5 </ Z;dWs> +5 sup (/ Z;dWs)
0<t<T 0 0<t<T \Jo
T 2
+5(T — t)/ |Fyys + FyY,) + Fozl + FzZ + F (u5) — F (us)| " ds
t
2

T
+5 sup ( / (Gyyt + GyY) + G.zt + G4 Z)) st>
0<t<T t
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Taking expectation and by B-D-G inequality, it follows that

T T
E< sup |Yt1|2> < 5E|h, (yT)y%|2+5E/ |Z;}2ds+0E/ |Z1| ds
0 0

0<t<T
T
+ CE/ (2 + [V 22 |22 4 1P () = P (us))) ds
0
T
+ CE/ |Gyys + Gy Y + Gzl + GZZ51|2ds.
0

Noting (3.10), from Lemmas 3.1 and 3.2, it is easy to see that (3.11) holds. The proof is complete. (]

Next, we will give some elaborate estimates for (y;,Y;, 2}, Z}) by virtue of the techniques of FBDSDEs.
Lemma 3.4. Assuming (H1)—(H4) hold, then we have

/ |yt [* e < Ce, (3.12)
E/ Y dt < et (3.13)
OT 3
E/ ‘zt| dt < Cez, (3.14)
0
/ \Z}[? dt < Ce3. (3.15)

Proof. By (3.7), we have

E [luh [ 0 WE [ (12 412 1)

T T
< B[ (@)~ f@)Yia-B [ (F @) - F )i
0 0
< E| sup |V} ‘/ ut)|dt]
0<t<T
+E | sup |yt‘dt/ |F (ug) — F (ug)] dt
0<t<T
_ 1
3 T |
2
< [B( s i) E(/ |F<u§>F<ut>|dt>
0<t<T 0
} v ik
+ [E( sup || ) E(/ |f(“§)—f(ut)|dt>
0<t<T 0
< Ced,
where C' is a sufficiently large positive constant. From (H3), the desired results are obtained. O

In order to obtain variational inequality, we need the following lemma.
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Lemma 3.5. Assuming (H1)—(H4) hold, then we have

T
E/ lvi — v — yi|” dt < Ce?,
0
T 2 3
E/ V7 —Y, =Y dt < Cez,
0
T 3
E/ |25 —zt—zt| dt < Cez,
0
T 2 3
E/}ﬁ—&—@ﬂ&gCﬁ,
112 3
sup [E\yt—-yt zu\} < Ce®,
0<t<T
sup {E}Yff}/}f}fﬂ §C’5%.
0<t<T

Proof. For notational convenience, we denote

Gt = Vi — Yyt — Ui
YV, =YF-Y, - Y},

Zt:szztfztl,

Zy =7 — 7y — 7}
We have the following FBDSDEs
too o _ o t t
gt = / {fyﬂs + fyYs + f2Zs + fZZs} ds —|—/ Vids +/ Hyds
0 0 0
t 5 _ t R
+/ [gygs + gY}fs + gzgs + gZZs:| dWs - / 2sst;
0 0
~ T ~ ~ ~ ~ ~ ~
Y; = h(yz) = h(yr +vr) + / [Fygs + Fy Y+ F.2 + FzZs} ds
t
T N o B o R T B T N
+ / (G + Gy Vo + G2, + G2, ] 4B, + / Veds + [ Hyds
t t t

1 T
+/(%@W+%0_WNMD%M—/‘&MQ
0 t

where

1
:/ fy(y byl NG, Vs YR AT 2t 2l AR, 2, +Z1+)\Zé,u)d)\,

0

1
fy = v (s + yL 4+ Mis, Ve + Y2+ AV, 26 + 21 + A2y, Zo + Z1 + AZ4, ul ) dX
f f y y5 y) s I s i s Y Y

0

1
:/ P (s + U2 MGy Yo+ Y AT, 2 21 4 A5y, Zy o+ 21 A2, ) A,

0

1
fz = | fz (s + bt + A, Yo + Y+ AVa, 20 + 21 + Ao, Zo + Z1 + AZg, S ) dA
fz fz (ys +ys + s, ; ; ; ;

0

1185

(3.16)
(3.17)
(3.18)

(3.19)
(3.20)

(3.21)
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1

@’111
I

Fy (o + 5l + Ao, Yo + V) 4 Ao, 2 2+ M5, 2, + 20 4+ A2, 5 ) A,
0

1
By /Fy<y5+y;+>\gjs,Ys+Y;1+)\}75,zs+z;+>\,§S,ZS+Z;+>\ZS,u§)d>\,

/Ole
Fy /
-

gy /gy(yﬁysﬂyé,Y T Y MY, 25 + 2 4+ A5, Zs +ZI+AZ) dA,

Ys + Yt + M, Yo + Y2+ AV, 2, + 2L + N5, Zo+ 21 + AZs,u‘;) d),

Al
Il
S
o

Fy (s + b+ X, Vo + Y2 4 Ay, 2 2+ X2y, Zo 4+ 214 02,05 ) AN,

(e}
—

gy (s + U2 + NG, Yo 4 V4 Ao 2 2L 4 M2, 2, + 21 4+ 02, ) ),

)
<
| I
o o
— —

B = [0 (0ot 040 Y b V2 4 Aoz 24 N 2k 224 0Z,) AN

(e}
—

g / 9z (yé+yé+>\wa YA, 25 + 25 + M, Zs +Zl+>\ZS>d>\,

9z =
0
~ 1 ~
Gy:/ Gy(yé+ys+>\yé,Y + YL N,z + 2+ N2, 2 +Zl+>\Zé>d>\,
0
1
éy:/ Gy (s + U2 + M, Yo 4 V2 4 Ao 2 2L+ N5, Z, 4 21 402, )
0
N 1
GZ:/ Gz(
0

1
Gy / Gz(y + A, Yo + Y+ A, 20 + 2L + N5, Zo + 21 + 0N Z,

Ys + Yt + Mo, Yo + Y+ MY, 2, + 21 + 02, Z, +Zl+>\25) d),
O )

1
V= [y (s + My, Yo + MY 26 + Az, Zo + AZ5,u) — fy] yadA
0
1

+ Uy (s + Ayss Yo + AV 20+ A2f, Zo + AZ5,ug) — fy] YidA

1

+ [ fe (ys + M0, Y + XYY 2 + A2L, Zo + AZLE ul) — f.] zhdA

1

+ [fZ (ys+)\y;a}/;+>\}/slazs+>\zéaz +>‘Z517 i) fZ} ZsldAa

T S — 5— —

Gy (s + Y\ Yo + XY 2o + A2l, Z, + AZ)) — gy] yadA
0
1

+ [ v (ys +YiN Ys + AV 2 + A2k, Zo + 0Z)) — gyv] YA

1

+ [ [g: (s + Ui A Yo + AY ) 2g + A2k, Zo + AZ)) — g.] zhdA

1

+ [ {9z (s +UsA Ye + A 2o+ A2, Zo + AZL) — gz] ZidA,

o— >— 5—
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S

f/f/o1 [Fy (ys + YN Yo + AV, 25 + A2k, Zg + AZ1u) — Fy| yldA
+/01 [Fy (ys + Y\ Yo + XY 25 + A2l, Zo + AZ) ul) — Fy] Y, dA
+/01 [F. (ys + i\ Yo + AY) 2o + A2k, Zo + AZ1 ul) — F.] 21X
+/01 [Fz (ys + ya\, Ys + AV 20 + A2y, Zo + AZL,u) — Fz| Z7dA,

1
i, :/ Gy (s + 42N Ye + AL 20+ A2L, Zo + AZY) — G] yhdA

1
(Gy (ys + Ys N Yo + AY) 2o + A2l Zo + MZ)) — Gy | Y dA

1

+ 2 (Ys I Ye + AV 2o + A2l Zo + AZ)) — G.] zidA

1

| [Gz (s + YN Ys + AV 26 + AL, Z, +AZY) — G] ZLEa.

fre
[

It is easy to check that

T 3
/ [VE*ds < Ce?,
0
/ |H,|*ds < Ce?.

By Lemma 3.4, applying It6’s formula to <ﬂt, 57}> on [0,7T], we get

_2
é}ds

T
E (h(y7) — h(yr) — hy (yr) y1, Y7 — Y1 — Y1) + HE/ {Iz}s ’
0

T

E/OT <g5,f/;+ﬁs>ds+E/ <Y5,Vf+Hs>ds

u (T 1 (T
E—/ |gjs|2ds+E—/ ds + E/
2 Jo BJo K
T 9 1 /7
+Eﬁ/ ds+E—/ |V;|2ds+—E/ \H,|? ds.
2 Jo K Jo o Jo

Noting that by means of the same arguments in Lemma 3.2, from Lemma 3.4, we easily have

IN

f/f ds

S

IN

Y,

sup (By|*) < C=t,
0<t<T

sup (E‘Ytl|2) < Ces.
0<t<T
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Thus it is obvious that
Eh (yr +y7) = Eh (yr) + Ehy (yr) yp + Ce?,
so by (H3) it follows that

E (h(y3) — h(yr) — hy (Y1) y7, Y5 — Y1 — Y1) = E<h(y%) — h (yr + 1) +Cs%,y%*nyy%>
> E (v5 — yr — yy) - Ce3,

and

- 2
\%s ds

S

2 1 T 2 1 T
é}dng—/ ds+—E/
mJo o Jo

1T, 1 T , i
+ E— Vil"ds+ —E |Hs|”ds — E (gr) - Ce
H Jo K Jo

2
+ 122 +

T
1 .9 1|&
Eﬂ/ [—|ys|+—Y
o 12 2

S

wlee

It is not difficult to see that E (gr) is bounded. Consequently, from that, (3.16)—(3.19) hold. Further using the
similar arguments in Lemma 3.2, we can obtain (3.20) and (3.21). The proof is complete. O

Lemma 3.6 (variational inequality). Under the assumptions (H1)—(H4), it holds that
T
E/ Lyt + Iy Y + Lz + 1220 +1(uf) = L(u)] dt + E [®y (yr) yr] + E [y (Yo) Y] > 0(e). (3.22)
0
Proof. According to the definition of uf, we have
J () 2 T (ugy).
moreover
T
E/ [l (ta yt€7 Y;Ea Zifa Zt€7 ug) -1 (ta Yt, }/ta 2t Zta ut)] dt + E [(I) (y%) - (yT)] +E [’7 (YOE) - (YO)] 2 Oa
0
or
/ Z(t yt7y;a7zt7ztaaut) l(tayt+yt17Y;:+Yt172t+2t17Zt+Zt17U§ﬂdt

T
/ l t ety Yo+ Y ;Zt+zt;Zt+Ztaut) l(tayt,Yt,Zt,Zt,Ut)] de
0

E[®(y7) — @ (yr +y1)] +E[® (yr +y3) — @ (yr)]
E[y (¥ (Y0+YT)J +B [y (Yo +Y4) -7 (%)] > 0.

By Lemma 3.5, it follows that

T
E/ [l(t,yf,Yf,zf,Zf,uf)fl(t,yt+yt1,Yt+Yt1,zt+ztl,Zt+Ztl,u§ﬂ dt
0

+E[®(y7) — ® (yr +yb)] +E [y (Y§) — v (Yo + Y2)] < Ce?,
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while

T
0< E/ [Z (t7yt+yt17Y;+Y;1;Zt+ZtlaZt+Ztlauf) _l(tathLZt;ZhU’t)} dt
0

+E[® (yr + y%) — @ (yr)| +E [y (Yo + YTI) —v(Yo)] + Ce?

T
/ [l (t yt+yt7Y;5+Y;1;Zt+Zt;Zt+Zt1;Ut) l(taytanaztaztvut)] de
0

T
+ Z tyt+ytla}/t+Y;1)Zt+zt17zt+zt1’ui)dt

T
Lty +y, Yo+ Y 2o+ 20, 2+ Z) u) dt

ho

E[®(yr+yr) —®wr)] +E[y (Yo+Y3) —v(Yo)] + Ces

T
- E/ Lyt + Y + Lozt + 1,20 dt + E/O 0 (us) — 1 (ug)] dt
+E / [ty (u5) — 1y ()] y? + Dy (u5) — Iy (u)] Y1} dt

+E /0 ([ (W) = L (ue)) 2 + 1z (uf) — 1z (ue)] 21 } dt + E [@y (yr) k] +E [yy (Yo) Y] + Ce?

IN

T T
E/ [yt + Yy + Lz +122]] dt+E/ [0 (u) — 1 (ug))dt
0 0

T
sup |yt|/ y(u)|dt| + E | sup ‘Ytl‘dt/ [ly (uf) — by (ug)|dt
0<t<T 0<t<T 0
1 l
T 5 2 T
+ E/ |1 (u) — 1. (ug)|” dt E/ \zt| dt]
0 0
1 1
T ) 2 T 9 1 3
+ E/ iz (uS) — 1z (ug)|” dt E/ |Z}|"dt| + E[®y, (yr)yr] + E [ (Yo) Yy'] + Ce?
0 0

T T
< E/ Ly + IvY + Lz + 122} dt + E/ [0 (uf) — 1 (uy)]dt
0 0

N -

) {E <0335T|yt1‘2>r B </0T 1y (u5) — 1, (ut)|dt>2 |

" |:E021tl£T (‘Ytl|2>} E </OT Iy (ug) = ly (ut)|dt>2

4+ Ce? - Cet 4+ Ce? - Cei + E [@y (yr)yr] + E [v (Yo) Yy ] + Ces

1
2

T
= E/ [yt + IvY + Lzt + 1220 +1(uf) = 1(ug)] dt
0
+E @, (yr)yr] + E [y (Yo) Yy ] +0(e).

From that, the desired result is obtained. O
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4. THE MAXIMUM PRINCIPLE IN GLOBAL FORM

We introduce the adjoint equations by virtue of dual technique and Hamilton function for our control problem.
From the variational inequality obtained in Lemma 3.6, the maximum principle can be proved by means of It6’s
formula. The adjoint equations are as follows:

dp; = (Fype — fy i + Gyke — gyhe — ly)dt )
+ (Fzpe — fzae + Gzky — gzhe — 12)dW; — kid By,

dqt = (prt — fyqt + Gyk/’t — gyht — ly)dt . (41)
+ (F.pt — foqe + Goke — g2hy — 1.)d By + hyd W,
po = —v (Yo), qr = —hy (yr) Pr + @, (yr), 0<t<T,

where (p(.),q(.),k(.),h(.)) € Rx R xR'xR% It is easy to verify that FBDSDE (4.1) satisfies (H1), (H2)
and (H3)’. From Proposition 2.2, we know that (4.1) has a unique solution (p(,),q(,),k(.),h(.)) € M?(0,T;

R xR x Rlde> . Now we define the Hamilton function as follows:

H(t,y,Y,Z,Z,U,p,q,k,h) = <q7f(tay7K27Z7U)> - <p7F(tay7KZ7Z7U)>
- <k,G(t,y,Y,Z,Z)> + <h,g(t,y,Y,Z,Z)> +l(t,y,Y,z,Z,v), (42)

where H : [0,7] xR x R x R'xRYXR x R x R x R'xR%— R. (4.1) can be rewritten as

dpy = —Hydt — HzdW,; — k:dB;,

dg; = —H,dt — H,dB; + h,dW,,

po = —y (Yo),

qr = —hy (yr) Pr + ®, (yr), 0<t<T,

where Hy = Hy (£,y (1), Y (£), 2 (6), Z (1), u(t) ,p(t).,q () K (8),h (), B =9, Y, 2, 7, respectively.
From Lemma 3.6 and (4.2), we can obtain the main result in this paper.

Theorem 4.1. Suppose (H1)—(H4) hold. Let (y(.), Yy, 200, 2y, u(.)) be an optimal control and its corresponding

tragectory of (2.1), (p(.), OILIeY h(.)) be the corresponding solution of (4.1). Then the mazimum principle holds,
that is

H (t,ye, Ye, 2e, Zi, 0, pe, Qe by he) > H (8, ye, Y, 26, Ziy we, Pe, Qe ke, he ), Yo €U, ace, a.s. (4.4)

Proof. By applying It6’s formula to <pt, Yt1> + <qt, yt1>, and noting the variational equation (3.1), the adjoint
equation (4.1) and the variational inequality (3.22), we get

T
E [®, (yr)yr] + E[w (Yo) Yo ] + E/ Lyt + Iy Y +zf +122) +1(uf) — 1 (ug)] dt
0
T
= E/ [H (t7yt’}/t’Zth’ui)ptaqhkta ht) - H(tayhy;ﬁzta Ztautapt;qt7kt; ht)] dt > O(E) .
0

Since € > 0 can be arbitrarily small, from the above inequality, (4.4) can be easily obtained. The proof is
complete. 0

In the last part of this section, we provide a concrete example of forward-backward doubly stochastic LQ
control problems. We give the explicit optimal control and validate our major theoretical result in Theorem 4.1.
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Example 4.2. Let the control domain be & = [—1,1]. Consider the following linear forward-backward doubly
stochastic control system which is a simple case of (2.1). We assume that [ = d = 1:

dye = (2t — Z¢ + ve) AW — %dBy,
dY; = — (2t + Z; + v) dBy + Z,dWy, (4.5)
Yo=0, Ypr=0, t€][0,7T],

where T' > 0 is a given constant and the cost function is
1 g 2 2 2 2, .2 Lo 1o
J (vy) = SE (7 + Y7 + 27 + Z7 +v7) dt + 5B + SEYG (4.6)
0

Note that (4.5) are a linear control system. According to the existence and uniqueness for (4.5), it is
straightforward to know the optimal control is u.) = 0, with the corresponding optimal state trajectory
(yt,Yy, 20, Z;) = 0, t € [0,T]. Notice that the adjoint equation associated with the optimal quadruple
(yt7 }/%7 Zt, Zt) = 0 are
dpy = =Y, dt + (k¢ — hy — Zy) AW, — kd By,
dqt = *ytdt —+ (*kt - ht - Zt) dBt + htth7 (47)
p(J:Oa qT:()a tG[O,T]

Obviously, (pt, g, kt, ht) = 0 is the unique solution of (4.7). Instantly, we give the Hamilton function is

1
H (t,ye, Ye, 26, Zt,0, e, oy ke he) = 3 (yi + Y2+ 27 + Z2+0°) =kt (2e + Ze +0) + he (20 — Zi + 0)
1
= 5’1)2.

It is clear that, for any v € U, we always have
H(t7yta}/taZtha’Uaptaqhkt;ht) Z H(t7yta}/taZthauhphqhktaht) = 07 a.e, a.s.

5. APPLICATIONS TO OPTIMAL CONTROL PROBLEMS OF STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

Let us first give some notations from [19]. For convenience, all the variables in this section are one-dimensional.
From now on C* (R;R), CF, (R;R), C’,’: (R;R) will denote respectively the set of functions of class C* from

R into R, the set of those functions of class C* whose partial derivatives of order less than or equal to k are
bounded (and hence the function itself grows at most linearly at infinity), and the set of those functions of
class C* which, together with all their partial derivatives of order less than or equal to k, grow at most like
a polynomial function of the variable z at infinity. We consider the following quasilinear SPDEs with control
variable:

w(t,z) =h(z)+ ftT [Lu(s,z) + f(s,x,u(s,x),(Vuo) (s,x),vs)] ds (5.1)
+ ftTg (s,z,u(s,z),(Vuo) (s,2))dB,, 0<t<T,

where u : [0,7] x R — R and Vu (s, z) denotes the first order derivative of u (s, z) with respect to x, and

Lu1
Lu = ,
Luk
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with Lo (z) = %2?,3:1 (00%);; (x) gxd)a(ij + 50 bi (2, 0) agx). In the present paper, we set d = k = 1, and

R xR — R,

:R — R,

0,7 xRxRxR xR —R,
0,7 xRxR xR —R,
:R — R.

U - 9 o

In order to assure the existence and uniqueness of solutions for (5.1) and (5.3) below, we give the following
assumptions for sake of completeness (see [19] for more details).
(A1)
beC,(RxR;R), oe€Cf (R;R), heC3(R;R),
f(t,--0) e Gl (RxRXR;R),  f(,2,y,20) € M?(0,T;R),
g(t,)eCP (RxRxR;R), g(,y,2) € M*(0,T;R)
vte[0,T],zeR,yeR,z€ R, veR.
(A2) There exist some constants ¢ > 0 and 0 < « < 1 such that for all (¢, z,y;, z;,v) € [0,T]xRx R xR xR
(1=1,2),

{ |f (t, 2,91, 21,0) — f(t730,y27227v)|2 <c (|y1 —yal” + |21 — Z2|2> ;
|g (tvx’ylazl) _g(tvx’92a22)|2 < C|y1 - y2|2 + o |Zl - 22|2'

Let Uaq be an admissible control set. The optimal control problem of SPDE (5.1) is to find an optimal
control, such that

J (v{,)) = inf J(U(.)),

V() EUad

where J (v(,)) is its cost function as follows:

J (vey) =

/ I(s,z,u(s,x),(Vuo) (s,z),vs)ds + v (u(0,x))] . (5.2)

Here we assume [ and ~ satisfy (H4). We can transform the optimal control problem of SPDE (5.1) into one of
the following FBDSDE with control variable:

X0 =g+ [T0(X0% ) dr + [ o (XE7) dW,,
YI® =0 (XE) + [T f (r, XEo Y0e, 207 0 de + [T g (r, X07, Y07, 267) AB, (5.3)
—[Fzteaw,, 0<t<s<T,

where (X(t)a,Y(t)a,Z(t)l (_)) € RxRxRxR, r € R. The corresponding optimal control problem of

FBDSDE (5.3) is to find an optimal control ’UE".) € Uy,q, such that

UCORN ARACOR

where J (v(.)) is the cost function same as (5.2):

T
J (o) =B /O (3, X4, Ya, Zsyvg) ds + 5 (Y)
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Now we consider the following adjoint FBDSDEs involving the four unknown processes (p, gz, ki, ht):

dpt = (fype + gvke — ly)dt + (fzpe — gzke — 1z) AW, — k’t&Bu
dg: = (fxpr — bxqe + gxke — oxhe — Ix) dt + hedWr, (5.4)
po=—w Yo), g¢r=-hx(Xr)pr, 0<t<T.

It is easy to see that the first equation of (5.4) is a “forward” BDSDE, so it is uniquely solvable by virtue of the
result in [19]. The second equation of (5.4) is a standard BSDE, so it is uniquely solvable by virtue of the result
in [18]. Therefore we know that (5.4) has a unique solution (p(.),q(.), ke, h(.)) € M?(0,T;RxR xR xR).
Define the Hamilton function as follows:

H(t’X7KZ7U7p’q7k’h): H(t,X,Y,O7Z7U7p7q7k’h)
— (L XY, Z,v) —k-g(t,X,Y,Z)
+qb(X,’l))fpf(t,X,Y,Z,U)+hU(X) (55)

We now formulate a maximum principle for the optimal control system of (5.3).

Theorem 5.1. Suppose (A1)—(A2) hold. Let (X(_),Y(.), Z(.),u(_)) be an optimal control and its corresponding

tragectory of (5.3), (p(.),q(_),k:(_),h(.)) be the solution of (5.4). Then the maximum principle holds, that is, for
te0,T], Vv €U,

I_{(taXhY;faZtavaptaqt;khht) Z H(t,Xt,Y;,Zt,'UZ,pt,Qt,k’t,ht), a.c., a.s.

Proof. Noting that the forward equation of (5.3) is independent of the backward one, we easily know that it is
uniquely solvable. It is straightforward to use the same arguments in Section 3 to obtain the desired results.
We omit the detailed proof. O

From the results in [19], we easily have the following propositions.
Proposition 5.2. For any given admissible control vy, we assume (Al) and (A2) hold. Then (5.3) has a
unique solution (Xé’)x, Y(t)l, Zf)x) € M?(0,T;Rx R xR).
Proposition 5.3. For any given admissible controlv(.y, we assume (A1) and (A2) hold. Let {u(t,z); 0 <t <T,
x € R} be a random field such that u (t,x) is ffT—measumble for each (t,z), uw € C%2([0,T] x R;R) a.s., and
u satisfies SPDE (5.1). Then u (t,z) = Y;"*.

Proposition 5.4. For any given admissible control v(.y, we assume (A1) and (A2) hold. Then {u (t,z) = Y;"";
0<t¢<T, xeR} is aunique classical solution of SPDE (5.1).

Set the Hamilton function

H (t,z,u, Vuo,v,p,q,k,h) =1(t,z,u, Vuo,v) — k- g (t,x,u, Vuo) +q-b(x,v) —p- f (t,x,u, Vuo,v) + h-o(x).

Now we can state the maximum principle for the optimal control problem of SPDE (5.1).

Theorem 5.5. Suppose u (t,z) is the optimal solution of SPDE (5.1) corresponding to the optimal control v(*_)
of (5.1). Then we have, for anyv €U and t € [0,T], z € R,

H (ta x,u (ta :L') ) (VUU) (ta :L') , Uy Dty Gt kta h't) Z H (t,:c,u (ta :L') 9 (VUU) (t,l‘) avrapta qt, kta h’t) , a.e., a.s.

Proof. By virtue of Propositions 5.2, 5.3 and 5.4, the optimal control problem of SPDE (5.1) can be transformed
into the one of FBDSDE (5.3). Hence, from Theorem 5.1, the desired result is easily obtained. O
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Remark 5.1. In Section 5, we study the optimal control problem of a kind of quasilinear SPDE which was
similar to the SPDE considered by Oksendal in [17]. It is worth mentioning that the quasilinear SPDEs in [19]
can also be related to a class of partially coupled FBDSDEs. Consequently the results in [17] can be obtained
by the approach of FBDSDEs.

6. LINEAR QUADRATIC NONZERO SUM DOUBLY STOCHASTIC DIFFERENTIAL GAMES

In this section, we investigate linear quadratic nonzero sum doubly stochastic differential games prob-
lems. Under the framework of uniqueness and existence result introduced above, we improve similar results in
Hamadéne [9] and Wu [27]. For notational simplification, we only consider two players, which is similar for n
players. Now the control system is the following forward doubly stochastic differential equation involving two
different directions of stochastic integrals.

{ dzy = [Az} + B o} + B3} + CkY + ay) dt + [Day + EkY + (] AW, — kPdBy, 6.1)

xy =a € R", tel0,77],
where A, C, D and E are n x n bounded matrices, further, F satisfies 0 < |E| < 1, v} and v?, t € [0,T], are
two admissible control processes, that is F;-progressively measurable square integrable processes taking values

in RF. B' and B? are n x k bounded matrices. o; and 3; are two adapted square-integrable processes. We
denote by

[

We denote v (-) = (v'(-),v?(:)). Here @, R* and P* (i = 1,2) are n x n nonnegative symmetric bounded

T () =
P ()=}

Sy ((Rap,ap) + (Nob,ul) + (PURY KY)) dt+ (QUat, b))

Jy ((R2ap,ap) + (N®2,02) + (P2hy, k) dt + (Q2at, at)]

N[=

E
(6.2)
E

matrices, N! and N? are k x k positive symmetric bounded matrices and inverses (N 1)_1 , (N 2)_1 are also
bounded. The problem is to find (u' (-),u?(-)) € R* x R which is called Nash equilibrium point for the game,
such that
JH(ut () u? () ST (), WP (), W' () € RN 63)
6.3
J2(ur (), u? () < T2 (ur (), 02 (), Vo? () € RE.

Note that the actions of the two players are described by a “forward” BDSDE in which we indicates that
the players should make some strategies to overcome the disturbed information. In order to introduce the main
result, we need the following assumptions:

BN ()" AT = AT () ()
BN (B T = T (V) ()
BV ) D =D ) By o
B () () BT = BB (V) (B
B ()7 (B P = P (v (B
Bi (Ni)*l (Bi)T P2 — p2pi (Ni)*l (Bi)T,



FORWARD-BACKWARD DOUBLY STOCHASTIC CONTROL SYSTEMS 1195

From the maximum principle for optimal control problems of FBDSDEs obtained above, we can find the
equations satisfied by Nash equilibrium points for the linear quadratic nonzero sum doubly stochastic differential
games problems. Now we can give an explicit form of Nash equilibrium point by virtue of solutions of linear
FBDSDEs. That is, we have the following theorem.

Theorem 6.1. The pair of functions

1
1>

£
=

I

\
—~
=
~—
L
—~
Sy
—
~—
~ S

<

w?=— (NY)(BY 2, telo,T],

is one Nash equilibrium point for the above game problem, where (xt,ytl,yf,kt,htl,hf) is the solution of the
following FBDSDE:

day = [z = B (NY) T (BY) yf = B2 (V2) 7 (B2) i + Ol + |

+ [Dx; + Ek; + 3] AW; — k,d By,
dy} = — [Ay} + DTh} + R'z;] dt — (CTy} + ETh} + P'k;) dBy + h}dWy, (6.5)
dy? = — [Ay? + DTh} + R?x;] dt — (CTy}? + ETh} + P%k;) dB; + h3dWy,

To = a, y% = Q1$T7 y% = Q2$T-
Proof. At the beginning, we prove the existence of the solutions of (6.5). Consider the following FBDSDE:
dX, = (AX, — Vi 4+ a;) dt + [CX, + 3] AW, — K,dB,

v, =~ (ATvi+ (B (N) ') (BY) R+ (B2 (V?) ) (B2)" R?) X, + DTH, ) dt
—[C"Y, + ETH, + PK,| dB; + H,dW,,

Xo=a,  vp=[(B'(N)T") (BY R+ (B2 (V3) 1) (B%)" 2] Xo.

(6.6)

Apparently, if (z¢,y},y?, ki, hi, h}) is the solution of (6.5), then FBDSDE (6.6) with (6.4) can be satisfied by
(Xt7 Yt; Kt; Ht):
Xt = @y,

Kt = kt7
vom BN (B 0 B () (5

Hy =B (NY) " (BY) nl + B2 (N2) ' (B2)" 12,

p=pB (N) " (BY +P2B2(N?2) " (B2)" .
In fact, it is easy to check that there exists a unique solution (X, Y:, Ky, Hy) for (6.6) according to Proposi-
tion 2.2. Hence we can first solve FBDSDE (6.6) to get solution (X, K;) which is obviously the forward part
(x¢, ki) of the solution of (6.5). Thanks to 0 < |E| < 1, by the existence and uniqueness of solutions of the
classical backward doubly stochastic differential equations (BDSDEs in short) (see [19]), it immediately follows
that (ytl, htl) and (yf, hf) are obtained by solving the backward equations of (6.5). Therefore we get a solution
(z4,yi,y?, ki, hi, h?) of FBDSDE (6.5).

From now on we prove (ul (t),u? (t)) is one Nash equilibrium point for our nonzero sum game problem. For
that it suffices that

Tt (),u? () (L), (), Vel () € RE.
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It is similar to give the other inequality by the same argument. Now we give the control system by xf{l:

da = [Ax;;l + B! + B2 + Ok + at} dt + [Dxfl +ERY @} AW, — k' dB,,
Ty = a, tel0,T].

THE (), u? () = T (! (),u? () = 5B

/TKFﬂM#><F%mw<w¢ﬁ>

0

— (b ul) + (PR R = (PR k) dt o+ (Qa 0 ) — <@1xT,xT>]
_lg
2

/OT <<R1 (:cfl - :L't) ,:cfl - :Et> + (N (v} —uy), v} —uy)

n <P1 (kfl - kt) g kt> 42 <R1xt,xf1 - act> +2 (N ul v} —ul) +2 <P1kt, - k:t>) at

+ <Q1 (x%l — :UT> ,x%l — xT> + 2 (leT, x%l — :UT> 1 .

Note that
QIQCT = y%

We apply 1td’s formula to <:cfl — Iy, y§> on the [0, 7] and get

1

T
E<I’lj}" - xT7y%“> - E/O (— <R1xt7 (I;[f} - $t>> + <B1 (Utl — ’UJ%) 7yt1> _ <P1k/’t;kz} _ k/’t>) dt
Under the assumption R', Q' and P! being nonnegative, N' being positive, and symmetry of B!, we have
T

P00 ) = (0 0 O) 2 B (Vo )+ (B (o ) )

: o T
— E/ <<—N1 (NY™(BY) yt, vt 7u%> n <(Bl) yl vl 7u%>) Q= 0.

0

Lastly, we claim that

-1 T
== ()7 (),
u} =— (NY) " (BY) yf, te[0,T],
that is, (utl, uf) is one Nash equilibrium point for our nonzero sum doubly stochastic game problem. ]

Remark 6.1. As matter of fact, in Theorem 6.1, we use the adjoint equation, the idea is as in Theorem 4.1.
Besides, the results of this section are clear and easy to understand. They can be applied in practice directly.
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