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ON THE NULL-CONTROLLABILITY OF DIFFUSION EQUATIONS

Gérald Tenenbaum1 and Marius Tucsnak1

Abstract. This work studies the null-controllability of a class of abstract parabolic equations. The
main contribution in the general case consists in giving a short proof of an abstract version of a
sufficient condition for null-controllability which has been proposed by Lebeau and Robbiano. We do
not assume that the control operator is admissible. Moreover, we give estimates of the control cost. In
the special case of the heat equation in rectangular domains, we provide an alternative way to check the
Lebeau-Robbiano spectral condition. We then show that the sophisticated Carleman and interpolation
inequalities used in previous literature may be replaced by a simple result of Turán. In this case, we
provide explicit values for the constants involved in the above mentioned spectral condition. As far
as we are aware, this is the first proof of the null-controllability of the heat equation with arbitrary
control domain in a n-dimensional open set which avoids Carleman estimates.
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1. Introduction and main results

This work is concerned with the study of null-controllability for a class of infinite dimensional systems
described by abstract parabolic equations of the form

ẇ = Aw +Bu, w(0) = z, (1.1)

where A is a negative operator in a Hilbert space X and, say, the operator B maps the input space U (also a
Hilbert space) into X . As discussed below, the range of B can in fact be a space which is larger than X : we say
in this case that the input operator in unbounded. More precise assumptions on A and B will be made later.

In the special case when A is the Dirichlet Laplacian in an open bounded set Ω ⊂ Rn and B corresponds to a
control distributed in a subset of Ω, i.e., for the standard diffusion equation, the null-controllability properties
are well understood. For early contributions, in which A is the Dirichlet Laplacian in one space dimension, we
refer to Fattorini and Russell [1,2].

When A is the Dirichlet Laplacian in Ω ⊂ R
n, where n � 2, and the control u is supported on an arbitrary

open subset of Ω, the null-controllability result has been independently established by Lebeau and Robbiano [4],
and by Fursikov and Imanuvilov [3].
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More recently, Micu and Zuazua in [6] (in one space dimension) and Miller [7] (in several space dimensions)
obtained a null-controllability result when A = −Aη

0 , where η > 1
2 and −A0 is the Dirichlet Laplacian. The

main tool brought up in [7] is an abstract sufficient condition for null-controllability, inspired by the method
introduced in [4] – see also Lebeau and Zuazua [5]. Note that the spectral condition in [7] is stated for a
A = −Aη

0 , with a general positive operator A0 (not necessarily with discrete spectrum) and that it furnishes
estimates of the control cost. The work of Seidman [10] contains a new version of the Lebeau-Robbiano method
which allowed, at least for η = 1 and B ∈ L (U,X), the improvement of the estimates from [7]. The constants
in the control cost have been further improved in [8], where a more direct methodology has been proposed.

In this work, our initial aim consists, in an abstract setting, in relaxing the assumptions on the control
operator B with respect to the existing literature, together with simplifying some proofs and the form of the
constants involved in the control cost estimates. In this context, without assuming any admissibility property
of the control operator B, we show, without any duality argument, that the observability assumption of finite
combinations of eigenvectors of the pair (A∗, B∗) implies its final-state observability. Note that a proof of this
implication has also been, independently and almost simultaneously, provided in [8] under the assumption that
B is an admissible observation operator for the semigroup generated by A.

Our second purpose is, in the case when A = −Aη
0 , where A0 is the Dirichlet Laplacian in a rectangular

domain Ω and η > 1/2, to provide an alternative way to check the Lebeau-Robbiano spectral condition. We
show, in this particular case, that the sophisticated Carleman and interpolation inequalities used in [4] may
be replaced by a simple result of Turán [12]. A novelty brought in by our approach is that, in the case of
rectangular domains, we provide explicit values for the constants involved in the above mentioned spectral
condition. Moreover, as far as we are aware, this is the first proof of the null-controllability of the heat equation
with arbitrary control domain in a n-dimensional open set which avoids Carleman estimates.

In order to precisely state our results, we need further notation. Let X be a Hilbert space, called state space,
which will be identified with its dual. The inner product in X is denoted simply by 〈·, ·〉 and the subordinated
norm by ‖ · ‖. Let A : D(A) → X be a a self-adjoint operator (possibly unbounded) on X such that

〈Az, z〉 � 0 (z ∈ D(A)).

Such an operator will be briefly called a negative operator. We also assume that A is diagonalizable with
an orthonormal basis of eigenvectors {ϕk}k�0 and corresponding family of eigenvalues {−λk}k�0, where the
sequence (λk) is positive, non decreasing and satisfies λk → ∞. According to classical results, this holds, in
particular, if A has compact resolvents.

With the above assumptions on A, we have

Az = −
∑
k�0

λk〈z, ϕk〉ϕk (z ∈ D(A)), (1.2)

so A generates a contraction semigroup T on X satisfying

Ttz =
∑
k�0

e−λkt〈z, ϕk〉ϕk (t � 0, z ∈ X). (1.3)

Moreover, the sets
Xβ :=

{
z ∈ X :

∑
k�0

(
1 + λ2

k

)β |〈z, ϕk〉|2 <∞
}

(β > 0) (1.4)

endowed with the inner product

〈y, z〉β =
∑
k�0

(
1 + λ2

k

)β 〈y, ϕk〉 〈z, ϕk〉 (z, y ∈ Xβ) (1.5)

are Hilbert spaces. The scale {Xβ}β�0 of Hilbert spaces can be extended to a scale {Xβ}β∈R by defining,
for every β < 0, Xβ as the completion of X with respect to the norm associated to the inner product (1.5).
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Alternatively, X−β may be defined, for β > 0, as the dual of Xβ with respect to the pivot space X . For
every β > 0, formulas (1.2) and (1.3), with 〈·, ·〉 standing this time for the duality between X−β and Xβ ,
provide canonical extensions for the operator A and the semigroup T to, respectively, a negative operator and
a contraction semigroup on X−β – indeed, the corresponding series converge in X−β. These extensions will be
still denoted by A and T. Note that, for every β ∈ R, the family {(1 + λ2

k)β/2ϕk}k�0 is an orthonormal basis
in Xβ.

Remark 1.1. The operator A is not explicitly necessary to construct the Hilbert spaces scale {Xβ}β∈R. Indeed,
one only needs to consider, formally, the Hilbert space X , a non decreasing, non negative sequence {λn}n�0,
with λn → ∞, and an orthonormal basis {ϕn}n�0 in X .

Let U be another Hilbert space, called input space, also identified with its dual. Let β � 0 and let B ∈
L (U,X−β) be an input operator. With the above notation, the solution w = wz of (1.1) is defined by

wz(t) = Ttz +
∫ t

0

Tt−sBu(s) ds
(
t � 0, z ∈ X, u ∈ L2([0,∞[, U)

)
. (1.6)

Note that, in general, wz 	∈ C([0,∞[, X), so that (1.6) should be understood in C([0,∞[, X−β). The system (1.1)
is said to be null-controllable in time T > 0 if, for every z ∈ X , there exists u ∈ L2([0, T ], U) such that wz(T ) = 0,
i.e., if, for every z ∈ X , the set

CT,z :=
{
u ∈ L2([0, T ], U) : wz(T ) = 0

}
is non empty. The quantity

CT := sup
‖z‖=1

inf
u∈CT,z

‖u‖L2([0,T ],U)

is then called the control cost.
Note that, since X, U are identified with their duals, we have B∗ ∈ L (Xβ, U).
Below and in the sequel, we freely use Vinogradov’s 
-notation. Thus a formula of the type f(x) 
 g(x)

(x ∈ X) indicates that, for all x in the set X , the inequality |f(x)| ≤ C|g(x)| holds with a suitable constant
C > 0, which may depend on certain implicit parameters. In this last case, the dependence may, or may not,
be indicated by annotating the symbol with appropriate subscripts.

We now state our first main result.

Theorem 1.2. Let A : D(A) → X be a negative operator and let B ∈ L (U,X−β) for some β � 0. Assume
that A is diagonalizable, that {ϕk}∞k=0 is an orthonormal basis of eigenvectors with corresponding non increasing
sequence of eigenvalues {−λk}∞k=0 such that limλk = ∞. Assume furthermore that there exists γ ∈ ]0, 1[ such
that, for suitable positive constants d0, d1, we have

( ∑
λγ

k�μ

|ak|2
)1/2

� d0ed1μ

∥∥∥∥∥∥
∑

λγ
k�μ

akB
∗ϕk

∥∥∥∥∥∥
U

({ak}k�0 ∈ �2(C), μ > 1
)
. (1.7)

Then the system (1.1) is null-controllable in any time T > 0. Moreover, given c > hghg−g2
dh
1 , where g :=

γ/(1 − γ), h := g + 1 = 1/(1 − γ), the control cost satisfies

CT 
 T−1/2ec/T g

(T > 0), (1.8)

where the implicit constant depends only on d0, d1, c, β, γ and ‖B‖L (U,X−β).

Remark 1.3. For small T , the condition on c in the above theorem coincides with the one obtained in [8], where
a larger family of generators A is considered – in particular A is not supposed to be negative or with discrete
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spectrum, so that assumption (1.7) is stated in a more general form. Unlike in [8], we do not assume in
Theorem 1.2 that B is an admissible control operator for the semigroup generated by A – see, for instance [11],
Section 4.2, for the definition of this admissibility concept.

Remark 1.4. From (1.8), it follows that there exists a constant K > 0 such that CT � K/
√
T for large T .

This decay rate is sharp if λ0 = 0 since, if u0 is a control steering the initial state ϕ0 to zero in time T , then

∫ T

0

〈u0(t), ϕ0〉dt = −1,

so that the Cauchy-Schwarz inequality clearly yields ‖u0‖L2([0,T ],U) � 1/
√
T . However, if λ0 > 0, then CT

decays exponentially as T → ∞. Indeed, we can then select u := 0 on [0, T/2] and then steer z to 0 at time T
by applying, on [T/2, T ], a control uniformly bounded for T > 0: that this is possible follows from Theorem 1.2.

A typical range of application for Theorem 1.2 is provided by diffusion equations (possibly fractional) in an
open bounded set Ω ⊂ Rn, with control acting in an arbitrary open set O ⊂ Ω. The major difficulty is then
to prove (1.7). This problem is solved in [4] when A := −Aη

0 , η >
1
2 , γ := 1/(2η), and −A0 is the Dirichlet

Laplacian on Ω, provided that ∂Ω is of class C∞. The corresponding proof uses deep Carleman estimates and
interpolation inequalities. In Section 3, we tackle the case of rectangular Ω by a different and fully elementary
method. More precisely, we prove the following result.

Theorem 1.5. Let m ∈ N∗, Ω ⊂ Rm be a rectangular domain, X := L2(Ω), let A := −Aη
0, where −A0 is

the Dirichlet or the Neumann Laplacian in Ω and η > 1/2. Set U := L2(O) and define B ∈ L (U,X) by the
formula

Bv := v1lO (v ∈ U),

where 1lO is the characteristic function of a non empty open subset O of Ω. Then assumption (1.7) holds with
γ := 1/(2η).

In particular, if Ω = [0, π]m, then, given any ε > 0, we may select

d1 := 3(1 + ε)m log(4πe) − 3(1 + ε) log |O∗|, (1.9)

where O∗ is any hyper-rectangle included in O, and

d0 := 2−m/4πm/2
( 1

eε log(4e)

)3m/4

·

By combining Theorem 1.5 (for a rectangular Ω) or the results in [4] (for the case in which ∂Ω is C∞) with
Theorem 1.2 with γ := 1/(2η), we obtain the following statement.

Corollary 1.6. Let m ∈ N∗, let Ω ⊂ Rm be a rectangular domain or a bounded domain with C∞ boundary and
assume the spaces X, U and the operators A, B verify the hypotheses of Theorem 1.5. Then the system (1.1) is
null-controllable in any time T > 0. Moreover, there exists a constant K > 0 such that the control cost satisfies

CT 
 T−1/2 exp
{
KT−1/(2η−1)

}
(T > 0), (1.10)

where the implicit constant depends only on Ω, O and K. Moreover, in the case Ω = [0, π]m, the constant K
can be chosen to be any number satisfying the condition

K > (2η)2η/(2η−1)2(2η − 1)−1/(2η−1)d
2η/(2η−1)
1 ,

where d1 is the constant defined in (1.9).
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2. Study of a moment problem

This section is devoted to set up the main argument of the proof of Theorem 1.2. Given T > 0, a sequence
{ψk}k�0 in a Hilbert space U and a non decreasing real sequence {λk}k�0, we are interested in the solvability
of the moment problem which consists in finding, for every sequence {ak}k�0, a function Θ ∈ L2([0, T ], U) such
that

ane−λnT +
∫ T

0

e−λnt 〈Θ(t), ψn〉U dt = 0 (n � 0).

Appealing to a simplification of the methodology proposed in [4] and developed in [7,8,10] we give below sufficient
conditions for the solvability of this moment problem and provide estimates for the solution Θ.

We start by recalling a classical result from Hilbert space theory. For the sake of completeness, we provide
a short proof, inspired from [11], Section 12.1.

Lemma 2.1. Suppose that W , Y , Z are Hilbert spaces, F ∈ L (W,Z) and that G ∈ L (Y, Z). Then the
following statements are equivalent:
(i) there exists c > 0 such that

‖F∗z‖W � c‖G ∗z‖Y (z ∈ Z);
(ii) there exists H ∈ L (W,Y ) such that G H = F and ‖H ‖L (W,Y ) � c.

Proof. That (ii) implies (i) readily follows from the facts that H ∗G ∗ = F∗ and ‖H ∗‖L (Y,W ) = ‖H ‖L (W,Y ).
It remains to show that (i) implies (ii). Assume (i) holds. We may define a mapping K : Ran G ∗ → Ran F∗

by the formula K (G ∗z) = F∗z for all z ∈ Z. Indeed, K is well defined since G ∗z1 = G ∗z2 implies

‖F∗(z1 − z2)‖W ≤ c‖G ∗(z1 − z2)‖Y = 0,

and so F∗z1 = F∗z2. Moreover, condition (i) can be rewritten as

‖K (G ∗z)‖W � c‖G ∗z‖Y (z ∈ Z).

Hence, K has a unique continuous extension to the closure RanG ∗ such that

‖K y‖W � c‖y‖Y (y ∈ RanG ∗). (2.1)

Next, we extend K to Y by setting K y = 0 for y ∈ (Ran G ∗)⊥. We still have K G ∗z = F∗z for every z ∈ Z

and if y = y1 + y2 ∈ Y with y1 ∈ RanG ∗ and y2 ∈ (Ran G ∗)⊥, we infer from (2.1) that

‖K y‖W = ‖K y1‖W � c‖y1‖Y � c‖y‖Y (y ∈ Y ),

so that ‖K ‖L (Y,W ) � c. Consequently, the operator H = K ∗ satisfies the required conditions. �

The main result of this section is Proposition 2.3 below. This statement rests upon a double set of hypotheses
concerning the sequence {ψn}∞n=0 of vectors of U and the non decreasing sequence of non-negative real numbers
{λn}∞n=0, namely

(H1)

{
(i) λn � Cnα for all n ∈ N and suitable constants α > 0, C > 0,

(ii) ‖ψn‖U � M(1 + λn)β (n � 0) for some M > 0, β > 0,

and

(H2)

⎧⎪⎨
⎪⎩

(i) limn→∞ λn = ∞,

(ii) ψn = B∗ϕn (n � 0) where {ϕn}∞n=0 is an orthonormal basis of X

and B ∈ L (U,X−β) for some β > 0,
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where the scale of Hilbert spaces {Xβ}β∈R is formally constructed from the sequences (λn) and (ϕn) as described
in Remark 1.1.

We exploit these assumptions in the following way (recall from the previous section the notation 
 for the
Vinogradov symbol).

Lemma 2.2. Let {ψn}∞n=0 be a sequence of vectors of U and {λn}∞n=0 be a non decreasing sequence of
non-negative real numbers such that one of the hypotheses (H1) or (H2) is satisfied. Let {an}∞n=0 ∈ �2(C),
λ > 0 and denote

F (t) :=
∑
n�0

|an|2e−2λnt, Fλ(t) :=
∑

λn�λ

|an|2e−2λnt, F⊥
λ (t) := F (t) − Fλ(t),

Gλ(t) :=
∥∥∥∥ ∑

λn�λ

ane−λntψn

∥∥∥∥
2

U

, G⊥
λ (t) :=

∥∥∥∥ ∑
λn>λ

ane−λntψn

∥∥∥∥
2

U

.

Then, for all positive real numbers ε, g, ϑ and η such that ϑ+ η + ε = 1, we have

F⊥
λ (t) +G⊥

λ (t) 
 e−2ϑλt+ε/tg

F (ηt) (t > 0). (2.2)

The implicit constant may depend on α, β, C, ε, g, M in the first case, and on B, β, ε, g in the second.

Proof. It clearly suffices to prove the upper bound for G⊥
λ . Assume first that (H1) holds. Then, by the

Cauchy-Schwarz inequality,

G⊥
λ (t) � M2

∑
λn>λ

e−3ελnt/2
∑

λn>λ

|an|2e−(2−3ε/2)λnt(1 + λn)2β


β,ε M
2(1 + t−2β)

∑
n�0

e−3Cεnαt/2
∑

λn>λ

|an|2e−(2−2ε)λnt.
(2.3)

Since ∑
n�0

e−3Cεnα/2 � 1 +
∫ ∞

0

e−3Cεxα/2 dx = 1 +
Γ(1 + 1/α)
(3Cεt/2)1/α

,

we obtain
G⊥

λ (t) 
 (1 + t−1/α)(1 + t−2β)e−2ϑλtF (ηt) 
 e−2ϑλt+ε/tg

F (ηt).
Assume now that (H2) holds. Then, Parseval’s formula implies that

G⊥
λ (t) =

∥∥∥∥B∗ ∑
λn>λ

ane−λntϕn

∥∥∥∥
2

U

� ‖B‖2
L (U,X−β)

∑
λn>λ

|an|2e−2λnt(1 + λ2
n)β


 ‖B‖2
L (U,X−β)(1 + t−2β)e−2λϑtF (ηt),

where, in the last stage, we used the bound

(1 + λ2
n)βe−2λn(ϑ+η+ε)t 
 (1 + t−2β)e−2ϑλt−2ηλnt (λn > λ, t > 0).

This readily implies the required conclusion. �
We are now in a position to state the main result in this section.

Proposition 2.3. With the notation and assumptions of Lemma 2.2, put

G(t) :=
∥∥∥∥∑

n�0

ane−λntψn

∥∥∥∥
2

(t > 0),
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and assume furthermore that there exists γ ∈ ]0, 1[ such that, for suitable positive constants d0, d1, we have

( ∑
λγ

k
�μ

|ak|2
)1/2

� d0ed1μ

∥∥∥∥ ∑
λγ

k
�μ

akψk

∥∥∥∥
U

(
{ak}k�0 ∈ �2(C), μ > 1

)
. (2.4)

Let g := γ/(1 − γ), h := 1/(1 − γ). Given D > 2 hghg−g2
dh
1 , we have

F (T ) 
 eD/T g

T

∫ T

0

G(t) dt (T > 0). (2.5)

The implicit constant above may depend upon γ, d0, d1, D, and on α, β, C, M if hypothesis (H1) holds, or B,
β if assumption (H2) is satisfied.

Proof. Let r > 1 and {ak}k�0 ∈ �2(C). By (2.4), we have

Fλ(t) � d2
0 e2d1λγ

Gλ(t)
(
λ > 0, T/r � t � T

)
.

Integrating this with respect to t and using the trivial bound

(r − 1)T
r

e−2λkT �
∫ T

T/r

e−2λkt dt (k ∈ N),

we obtain

Fλ(T ) � K1

T
eK2λγ

∫ T

T/r

Gλ(t) dt (T > 0), (2.6)

with
K1 := rd2

0/(r − 1), K2 := 2d1.

Let ε > 0 and let ϑ, σ > 0 be such that ε = 1 − ϑ− rσ. Recall that g := γ/(1 − γ) and h := 1/(1 − γ). Using
Lemma 2.2 and (2.6), it is not difficult to check that

F (T ) 
 eK2λγ+ε/T g

T

∫ T

T/r

G(t) dt+ eK2λγ−2ϑλT+ε/T g

F (σT ), (2.7)

where the implicit constant may depend upon K1 and all parameters indicated in the statement of Lemma 2.2.
Given ν > 0, we select λ := {K2ν/ϑσT }h, so that

K2λ
γ − 2ϑλT =

Kh
2 ν

g

(ϑσT )g

{
1 − 2ν

σ

}
= −K

h
2 ν

g(2ν − σ)
ϑgσhT g

·

Writing

D0 :=
Kh

2 ν
g

ϑgσg
, E0 :=

Kh
2 ν

g(2ν − σ)
ϑgσh

,

equation (2.7) becomes

F (T ) � K

T
eD/T g

∫ T

T/r

G(t) dt +Ke−E/T g

F (σT ), (2.8)

where K is a suitable constant and
D := D0 + ε, E := E0 − ε. (2.9)

Selecting ν so large that

ν >
1

2σg−1
+

εσϑg

2Kh
2 ν

g
,
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we have
E > D(1/σg − 1). (2.10)

Applying (2.8) to F (σT ) instead of F (T ), we thus arrive at

F (T ) � K

T
eD/T g

∫ T

T/r

G(t) dt+
K2

σT
eD1/T g

∫ σT

σT/r

G(t) dt+K2e−E1/T g

F (σ2T )

where
D1 := D/σg − E, E1 := E(1 + σg)/σg.

After N iterations, we thus get

F (T ) � K

T
eD/T g

∫ T

T/r

G(t) dt +
∑

1�j�N

Kj+1

σjT
eDj/T g

∫ σjT

σjT/r

G(t) dt

+KN+1e−EN /T g

F
(
σN+1T

)
,

(2.11)

with

Dj :=
D − E(σg + . . .+ σgj)

σgj
=

1
σgj

{
D − E(1 − σjg)

1/σg − 1

}
, EN :=

E(1 + . . .+ σgN )
σgN

·
Observe that supt�0 F (t) � ‖a‖
2(C), so that the last term in (2.11) tends to 0 as N → ∞. Moreover, we infer
from (2.10) that Dj < D for all j and that Dj tends exponentially to −∞ as j → ∞. Therefore, under the
above restrictions on the various parameters, we obtain

∑
j�1

Kj+1

σjT
eDj/T g 
 eD/T g

T

if, say, T � 1. The same result holds for T > 1 provided we increase, if needed, the value of ν to ensure that
D1 = −LT g where L is a constant possibly depending on all parameters except T and such that L > 2K/σ:
then, we have eD/T g 
 1 and the alteration of D is actually irrelevant.

Letting N → ∞ in (2.11), we finally obtain

F (T ) 
 eD/T g

T

∫ T

0

G(t) dt,

where the implicit constant is restricted as in the statement.
This plainly implies the stated result when T > 1 since, as noted above, the exponential factor is bounded

with our choice for ν. When T � 1, we may select any ϑ < 1/h, σ < g/h, ν > 2g−2 provided r is sufficiently
close to 1 and ε is small enough. Then, D can be taken as any number strictly exceeding 2−ghghg−g2

Kh
2 . Since

K2 = 2d1, we indeed get that (2.5) holds whenever D > 2 hghg−g2
dh
1 . �

Proposition 2.4. With the notation and assumptions of Proposition 2.3, for every T > 0 there exists a bounded
operator HT ∈ L (�2(C), L2([0, T ], U)) such that, for every {an}n�0 ∈ �2(C), we have

ane−λnT +
∫ T

0

e−λnt 〈HTa(t), ψn〉U dt = 0 (n � 0). (2.12)

Moreover, for every c > hghg−g2
dh
1 , we have

‖HT ‖ 
 ec/T g

√
T

(T > 0). (2.13)
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The implicit constant above may depend upon γ, d0, d1, D and on α, β, C, M if hypothesis (H1) holds, or B,
β if assumption (H2) is satisfied.

Proof. Write Y := L2([0, T ], U), Z := �2(C). Here Y and Z are endowed with the canonical scalar products

〈u, v〉Y :=
∫ T

0

〈u(t), v(t)〉U dt, 〈a, b〉Z :=
∑
n�0

anbn.

Given ε > 0, we consider Gε ∈ L (Y, Z) defined by

(Gεu)n :=
〈
u, e−λn(t+ε)ψn

〉
Y

(n � 0). (2.14)

Then for any a ∈ Z, we have

〈Gεu, a〉Z =
∑
n�0

an

〈
u, e−λn(t+ε)ψn

〉
Y

=

〈
u,
∑
n�0

ane−λn(t+ε)ψn

〉
Y

.

Therefore,

G ∗
ε a =

∑
n�0

ane−λn(t+ε)ψn (a ∈ �2(C)). (2.15)

Consider also the self-adjoint operator Fε ∈ L (Z) defined by

(Fεa)n = −e−λn(T+ε)an (a ∈ Z, n � 0).

Applying Proposition 2.3 to the sequence {ane−ελn}∞n=0, we obtain that the bound

‖F∗
ε a‖Z 
 ec/T g

√
T

‖G ∗
ε a‖Y ,

holds for every c > hghg−g2
dh
1 . Note that the implicit constant above does not depend on ε. By Lemma 2.1

with W = Z, it follows that there exists Hε ∈ L (Z, Y ) such that GεHε = Fε. Moreover, ‖Hε‖ 
 ec/T g

T−1/2

where the implied constant is independent of ε > 0. Thus, for any a ∈ Z, we have

(Fεa)n = −ane−λn(T+ε) = (GεHεa(t))n =
∫ T

0

〈
Hεa(t), e−λn(t+ε)ψn

〉
U

dt (n � 0).

Dividing through by e−λnε, we see that HT := Hε satisfies (2.12) and (2.13). �

Remark 2.5. Albeit our proof of Theorem 1.2 (see Sect. 3) only appeals to assumption (H2), we stated
Proposition 2.4 in a more general form: indeed, its validity under assumption (H1) is of independent interest.
This latter hypothesis can also be used for systems governed by diffusion equations (for instance in the proof of
Cor. 1.6) since condition (i) in (H1) is satisfied when −A0 is the Dirichlet Laplacian; this follows from Weyl’s
formula – in fact a simpler classical result (see, for instance [11], Prop. 3.6.9) suffices.
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3. Proof of the main results

We first show that Theorem 1.2 is a simple consequence of Proposition 2.4.

Proof of Theorem 1.2. Set an := 〈z, ϕn〉 (n � 0). From (1.3) and (1.6), we see that the null-controllability
of (1.1) in time T is equivalent to the existence, for every z ∈ X , of a function u ∈ L2([0, T ], U) such that

ane−λnT +
∫ T

0

e−λn(T−t)〈u(t), B∗ϕn〉U dt = 0 (n � 0).

Now Proposition 2.4 implies that the function

u(t) := (HT a)(T − t) (t ∈ [0, T ]),

satisfies the above condition. Consequently, (1.1) is null-controllable in any time T > 0. Finally, the cost
estimate (1.8) readily follows from (2.13). �

Our proof of Theorem 1.5 is based on the following result of Turán [12] – see also Lemma 1 in Montgomery [9],
p. 89.

Lemma 3.1. Let N ∈ N∗, Λ := [−N,N ] ∩ Z and let {an}n∈Λ be a complex sequence. Put

f(x) :=
∑
n∈Λ

aneinx (x ∈ R).

Then, for every subinterval I of [−π, π] with length |I| = 4πeL, we have

sup
x∈I

|f(x)| � L2N max
x∈[−π,π]

|f(x)|.

This result opens the way to a comparison statement between the L2-norms of a trigonometric polynomial
over the full torus and over a restricted interval.

Proposition 3.2. With the notation in Lemma 3.1, we have∫
I

|f(x)|2 dx � L6N

8
√

2N3/2

∑
n∈Λ

|an|2. (3.1)

Proof. Let x0 ∈ I be such that |f(x0)| = ‖f‖L∞(I). By the Cauchy-Schwarz inequality, we have

|f ′(x)| � N3/2

√
2
∑
n∈Λ

|an|2 �
√

2N3/2‖f‖L∞[−π,π] (x ∈ R). (3.2)

Set

h :=
L2N

√
8N3/2

, (3.3)

so that it follows from (3.2) that

h|f ′(x)| � 1
2‖f‖L∞[−π,π]L

2N (x ∈ R),

and in turn, from Lemma 3.1,

h � |f(x0)|
2‖f ′‖L∞[−π,π]

· (3.4)
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The above inequality implies that
min

|x−x0|�h
|f(x)| � 1

2 |f(x0)|.

Moreover, since h < 2πeL, at least one of the intervals [x0 − h, x0] and [x0, x0 + h] is contained in I. Therefore

∫
I

|f(x)|2 dx � 1
4h|f(x0)|2.

Appealing to Lemma 3.1 again and using (3.3), it follows that

∫
I

|f(x)|2 dx � L6N

4
√

8N3/2
‖f‖2

L∞[−π,π] � L6N

4
√

8N3/2

∑
n∈Λ

|an|2. �

We now derive a straightforward corollary of the above proposition, adapted to sine or cosine series in several
variables. More precisely, for every m � 1, we define

ϕα,m(x) =
(

2
π

)m/2 ∏
1�j�m

sin (αjxj)
(
α ∈ N

m, x ∈ [0, π]m
)
, (3.5)

and

Φα,m(x) =
(

2
π

)m/2 ∏
1�j�m

cos (αjxj)
(
α ∈ N

m, x ∈ [0, π]m
)
. (3.6)

Corollary 3.3. Let m, N � 1, D ⊂ [0, N ]m∩Nm, and P (x) :=
∑

α∈D bα�α,m(x) (x ∈ Rm) be a trigonometrical
polynomial with complex coefficients, where either �α,m := ϕα,m for all α or �α,m := Φα,m for all α. Moreover,
assume in the former case that bα := 0 whenever

∏
1�j�m αj = 0.

If R is a hyper-rectangle included in [0, π]m with measure (4πe)mϑ > 0, we have

∑
α∈D

|bα|2 � (4π)m
(
2N3

)m/2
ϑ−6N

∫
R

|P (x)|2 dx. (3.7)

Proof. We only consider the case (�α,m) = (ϕα,m), since the other case is similar. We argue by induction
upon m. When m = 1, we have

i
√

2πP (x) =
∑
n∈Λ

aneinx,

with Λ := [−N,N ] ∩ Z and an = sgn(n)bn (n ∈ Λ). By Proposition 3.2, we thus obtain

8π
√

2N3/2ϑ−6N

∫
R

|P (x)|2 dx �
∑
n∈Λ

|an|2 = 2
∑

1�n�N

|bn|2.

This is the required inequality for m = 1.
Let m � 2 and assume (3.7) holds for m− 1. We may write R = S × I with S ⊂ [0, π]m−1, |S | = 4πeτ ,

|I| = 4πeσ, and τσ = ϑ. Moreover, setting

Dn := {β ∈ (N∗)m−1 : (β, n) ∈ D} (1 � n � N),

Pn(x) :=
∑

β∈Dn

bβnϕβ,m−1(x)
(
1 � n � N, x ∈ R

m−1
)
,



ON THE NULL-CONTROLLABILITY OF DIFFUSION EQUATIONS 1099

we have for all x ∈ Rm−1, in view of (3.1),

∫
I

|P (x, xm)|2 dxm =
∫

I

∣∣∣∣ ∑
1�n�N

Pn(x)ϕn,1(xm)
∣∣∣∣
2

dxm � (σ/e)6N

4π
√

2N3/2

∑
|n|�N

|Pn(x)|2,

hence, by the induction hypothesis,

∫
R

|P (x)|2 dx =
∫

S

∫
I

|P (x, xm)|2 dxm dx � σ6N

4π
√

2N3/2

∑
|n|�N

∫
S

|Pn(x)|2 dx

� (τσ)6N

(4π)m(2N3)m/2

∑
|n|�N

∑
β∈Dn

|bβn|2.
�

Proof of Theorem 1.5. For the sake of simplicity, we select Ω = ]0, π[m. Let −A0 be the Dirichlet Laplacian
on Ω. Then, the family {ϕα,m : α ∈ (N∗)m} defined in (3.5) is an orthonormal basis of L2(Ω) formed of
eigenvectors of −Aη

0 on Ω and corresponding to the sequence of eigenvalues (λα) given by

λα := ‖α‖2η =
( ∑

1�k�m

α2
k

)η (
α ∈ (N∗)m

)
. (3.8)

Corollary 3.3 immediately furnishes constants d0, d1 such that, for every {aα} ∈ �2 ((N∗)n
,C), we have

( ∑
λ
1/2η
α �μ

|aα|2
)1/2

� d0ed1μ

∥∥∥∥∥∥
∑

λ
1/2η
α �μ

aαϕα,m

∥∥∥∥∥∥
L2(O)

(
μ > 1

)
. (3.9)

Indeed, given any ε > 0, we may select d1 := 3(1 + ε)m log(4πe)− 3(1 + ε) log |O∗|, for any hyper-rectangle O∗

included in O and then, since d1 � 3m log(4e),

d0 := 25m/4πm/2

(
1

4eε log(4e)

)3m/4

= 2−m/4πm/2

(
1

eε log(4e)

)3m/4

,

in view of the elementary inequality x3m/4 � (3m/4eλ)3m/4eλx, which is valid for all λ > 0, m � 1, x � 0.
Since B∗ϕ = ϕ|O for every ϕ ∈ L2(Ω), inequality (3.9) is precisely (1.7) with γ := 1/(2η) ∈ ]0, 1[.

We proceed similarly when −A0 is the the Neumann Laplacian. The family {Φα,m : α ∈ Nm} defined in (3.6)
is an orthonormal basis of L2(Ω) formed of eigenvectors of −Aη

0 on Ω and corresponding to the sequence of
eigenvalues (λα) still given by (3.8), but with now α ∈ Nm. From this point on, the argument is unchanged. �
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