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NUMERICAL SOLUTION OF AN INVERSE INITIAL BOUNDARY VALUE
PROBLEM FOR THE WAVE EQUATION IN THE PRESENCE
OF CONDUCTIVITY IMPERFECTIONS OF SMALL VOLUME

MARK AscH', MARION DARBAS! AND JEAN-BAPTISTE DUVAL'!

Abstract. We consider the numerical solution, in two- and three-dimensional bounded domains, of
the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium
with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat
the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite
element solution of the wave equation, an exact controllability method and finally a Fourier inversion
for localizing the centers of the imperfections. Numerical results, in 2- and 3-D, show the robustness
and accuracy of the approach for retrieving randomly placed imperfections from both complete and
partial boundary measurements.
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1. INTRODUCTION

The localization of small imperfections is of great importance since there are numerous practical applications,
particularly in the fields of medical imaging and nondestructive testing of materials. Generally, when we seek
to localize an imperfection contained in a bounded domain, we need to solve an inverse problem for retrieving
the geometry of the imperfection.

The determination of conductivity profiles from knowledge of boundary measurements has received a great
deal of attention (see, for example, [1,2,5,20,32]). However, the reconstruction of imperfections within a dynam-
ical (i.e. time-dependent) framework has not been widely investigated. The present paper is a first attempt to
implement an effective numerical method to determine the location of small-sized, conductivity imperfections
inside a homogeneous medium from dynamical measurements on a part of the boundary. In imaging, this is
known as “limited-view data”.

The inverse problem considered in this paper is more complicated from the mathematical point of view and
more interesting from the point of view of applications than the one solved in [5,32] because one often cannot get
measurements for all £ or on the whole boundary, and so one cannot, by taking a Fourier transform in the time
variable, reduce our dynamic inverse problem to the Helmholtz equation considered in [5,32]. Previous numerical
investigations have concentrated on time independent equations with full data — see for example, [6,7,12].
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FIGURE 1. An example of a 2-D domain containing three imperfections, z; + aB1, 22 + aBs, z3 + aBs3.

This article is based on three sources: the Hilbert Uniqueness Method (HUM) formulated by Lions — see [30];
the numerical application of the above method to exact boundary control of the wave equation by Glowinski
et al. — see [26]; the theoretical results of the problem of detection for the wave equation by Ammari — see [2].

This paper is structured as follows. We begin, in Section 2, by defining some notation and then formulate the
inverse initial boundary value problem. We also address the identification procedure by the Fourier method. In
Section 3, we recall the numerical algorithm for the Hilbert Uniqueness Method of Lions [30]. We present the
numerical method used for the dynamic detection problem in Section 4. Then numerical results obtained from
simulations are shown in Section 5. Finally, some conclusions and perspectives are reported in the last section.

2. DYNAMIC LOCALIZATION THEORY

In this part, we recall the different results contained in the article of Ammari (see [2] for the full details) on
which the numerical algorithm and the subsequent simulations will be based.

2.1. Some notation and presentation of the inverse problem

2.1.1. Some notation

Let © be a bounded, smooth subdomain of R?, d = 2, 3, with for simplicity, a smooth boundary 9, with n
denoting the outward unit normal to 92. We suppose that € contains a finite number m of imperfections, each
of the form z; +aB;, where B; C R? is a bounded, smooth domain containing the origin (see Fig. 1). This gives
a collection of imperfections of the form B, = U;»"zl(zj + aB;). The points z; € Q, j = 1,...,m, that define the
locations of the imperfections are assumed to satisfy two distance conditions:

{|ijl|2d0>0vj7élv (21)

We also assume that a > 0, the common order of magnitude of the diameters of the imperfections, is sufficiently
small so that these are disjoint and their distance to R\ is larger than dy /2.

2.1.2. Presentation of the inverse problem

Let v9 denote the conductivity of the background medium which, for simplicity, we shall assume is constant.
Let v; be the constant conductivity of the j-th imperfection, z; + aB;. We define the piecewise constant
conductivity

[ v, ifz € Q\Ba,,
’YOC(I)_{ eE ifl’EZj‘FOLBj.
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Consider the initial boundary value problem for the wave equation, in the presence of the imperfections,

2
0(9?; =V (aVus) =0 in Qx(0,7),
U = [ on 002 x (0,7, (2.2)

uq :
0,% =u! in Q.

t=0

Ualt=0 = u

Define u to be the solution of the wave equation in the absence of any imperfections, satisfying

0%u .

va-(’yOVu):O in Qx (0,7),

u=f on 002 x (0,7, (2.3)
ou

ui—o = u’, — =u' in Q.
ot |,

Here T > 0 is a final observation time, and the initial conditions ¢, € C*°(Q2) and the boundary condition
f€C>®0,T;C>(09)) are subject to the compatibility conditions at the initial time,

07 fli=o = (00)' (A"’ on and ! flio = (0) (A'u')|a, 1=1,2,...

These ensure that the initial boundary value problem (2.3) has a unique solution in C*°([0,T] x Q); see [23].
The transmission problem for the wave equation (2.2) has a unique weak solution u, € C°(0,T; H*(Q)) N
C*(0,T; L?(€2)); see, for example, [30]. Moreover, it can be shown that 66“; laq belongs to L?(0,T; L?(92)).

We employ standard L2-based Sobolev spaces to measure function regularity. The notation H* denotes those
functions which, along with all their derivatives of order less than or equal to s, are in L2. In particular, H}
denotes the closure of C§° in the norm H'!. Sobolev spaces with negative indices are defined by duality, using
an L2-inner product. We shall only need one such space, namely, H !, which is defined as the dual of Hg.

The inverse problem is: determine the centers of the imperfections from the knowledge of boundary data,
generated numerically,

Oug

on
where T'. C 99 is a part of the boundary that must satisfy certain geometrical constraints, and (0, T) is the finite
time-interval during which the measurements are recorded. It is also possible to compute certain properties
of the shapes of the imperfections By, though this is not treated here. For this purpose, Ammari, in [2], has
developed an asymptotic method based on appropriate averaging of dynamic boundary measurements, using
particular background solutions as weights. These particular solutions are constructed, when measurements are
available on all or a part of the boundary of the domain, by the control method of Section 3.

The first fundamental step in the design of the reconstruction method is the derivation of an asymptotic
formula for ?T?|8(Zj+a B,)+ on the outer boundaries of the imperfections, in terms of the reference solution u,
the location z; of the imperfection z; + aB3;, and the geometry of B;. The next step is the use of this
asymptotic formula to derive integral boundary formulae with a judicious choice of test functions and is based
on the geometrical control method and the solution of Volterra-type integral equations. We will show that these
boundary integral formulae form the basis of very effective numerical identification algorithms, as was predicted
in [2]. We note that an analogous approach may be applied to the full (time-dependent) Maxwell equations
with small imperfections of different electric permittivity or magnetic permeability (or both) — see [12] for the
time-harmonic case.

on . x (0,7),

2.2. The asymptotic formula and the identification procedure

Following [2], we let 8 € C§°(2) be a cutoff function such that (z) = 1 in a subdomain ' of Q that
contains the imperfections B,. For an arbitrary n € R?, we assume that we are in possession of the boundary
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measurements of

0
% on T, x (0,7)
for . . ' _
uO(x) = e ul(z) = —iyAo In] €T and f(z,t) = eIV (2.4)

This particular choice of plane wave data u°, u' and f implies that the background solution u of the wave
equation (2.3) is given explicitly by

w(z,t) = uy(x,t) = T WVRMIE iy O % (0, 7). (2.5)

Suppose that T" and the part I'. of the boundary 02 are such that they geometrically control €2, which
roughly means that every geometrical optics ray, starting at any point € € at time ¢t = 0, hits I'. before
time T at a non-diffractive point — see [11,15]. Then from [30], it follows that for any € R%, we can construct
by the Hilbert uniqueness method (HUM), a unique g, € H}(0,T; L?(T)) in such a way that the unique weak
solution w,, in C°(0,7; L*(2)) N C*(0,T; H=1(£2)) of the wave equation

8;;’;’7 — V- (V) =0 in Qx (0,7),
wy = gy on T, x (0,7),
wy, =0 on OQ\I'. x (0,7, (2.6)
wyli=o = B(x)e!™ €H;(9),
% =0 in €,
t=0

satisfies wy (1) = Oyw, (T') = 0.
Next, for any n € R, let 0, be the solution to the Volterra equation of the second kind:

ae,b(zs,t) " ftT o—ivAalnl(s—t) <9n(:£,s) — iyl ae,b(f,t)) ds
=gy(z,t) forxzel., te(0,T), (2.7)
0,(x,0) =0 for z € T..

The existence and uniqueness of this 6, in H'(0,T;L*(T'.)), for any n € R? can be established using the
resolvent kernel. Since g, € Hg(0,T; L*(T'..)), the solution 6, belongs, in fact, to H2(0,T; L*(T'.)). We also note
from differentiation of (2.7) with respect to ¢ that 6,, is the unique solution of the ODE

{ 8y, — 0, = eVlltg, (=TIt ) for z € L., t € (0,T), (2.8)

0, (x,0) = 0:0,(x,T) =0 for x € ..

It also immediately follows from this observation that 6, belongs to H?(0,T; L*(T)) since g, € H}(0,T; L?(T)).
To identify the locations and certain properties of the small imperfections B,, we average the boundary

measurements 65‘; |Fc><(O,T)a using the solution 6, to the Volterra equation (2.7) or, equivalently, the ODE (2.8)

as a function of 1. The following result holds.

Theorem 2.1 (Ammari). Let n € R, d = 2, 3. Let u, be the unique solution in C°(0,T; H'(2)) N C1(0,T;

L?(Q)) to the wave equation (2.2) with

(@) = ul(x) = e, ul(2) = ul(x) = ~iy/A0 |

and . _
Pl t) = folar 1) = etV
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Suppose that T and T geometrically control Q [15]; then we have

T ou ou ou ou T : . ou ou
a7 Tt 77 - _ iy olnlt —iyAolnlt Zra 77
/0 /F [977 ( on an) + 060 ( on 8n)] /o /Fe O (e g") ( on 8n)
a3 (20 = 1) e (ot ol |51 + ofa),
— j
(2.9)

where 0, is the unique solution to the ODE (2.8), with g, defined as the boundary control in (2.6), and M; is
the polarization tensor of Bj, defined by

(M)t = ex - ( / 5 (v (1— -1) @i@)) v dsj<y>> . (2.10)

Here (e1,...,eq) is an orthonormal basis of RY, v; 1s the outward normal of the j-th imperfection and ®; is the
solution of a Laplace equation in the j-th imperfection.

See [2] for the full formulation and details of the proof. This theorem is fundamental for our identification
problems.

Remark 2.1. In this result, the control function is a technical device that is used in an adjoint formulation
based on integration-by-parts. This control does not have a physical interpretation. Its role is to reduce the
identification problem to a quantity that can be easily calculated on the boundary.

Remark 2.2. The choice of plane-wave initial data is only one of many possible choices. If we choose other
initial functions, we indeed obtain different imaging algorithms (see [10]) but the complexity of the inverse
problem remains the same, since we still have to compute the same boundary control.

We can now proceed to describe our identification procedure which is based on Theorem 2.1. We neglect the
asymptotically small remainder in the asymptotic formula (2.1) and define A, (n) by

T . . ou ou
_ ivAo0lnlt —iy/Aoln|t e 77 2.11
/0 /Fe O (e g”) ( on 8n) (211)

m
7 in-z;
>0 (2= 1) e [aty00) 0~ ol 551
j=1 >

Aa(n)

%

The function A, (n) is computed in the following way. First, we construct the control g, in (2.6) for given
n € RY. Then from the boundary measurements 86“; Irx(0,), and the explicit knowledge of g—z, we form the
weighted boundary integrals that appear in the above expression of A (7).

Recall that the function e®7% is exactly the Fourier transform (up to a multiplicative constant) of the
Dirac function ¢_5.; (a point mass located at —2z;). From Theorem 2.1, it follows that the function A,(n) is

(approximately) the Fourier transform of a linear combination of derivatives of point masses, or

Aa(@) =y Ly (3-22) (),

where L; is a second order, constant coefficient, differential operator whose coefficients depend on the polariza-

tion tensor M; defined by (2.10) (see [4,17] for its properties) and A, (z) represents the inverse Fourier transform
of Ay(n).
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The method of reconstruction we propose here consists, as in [5], of sampling values of A, (1) at some discrete
set of points and then calculating the corresponding discrete inverse Fourier transform. After a rescaling by f%,
the support of this discrete inverse Fourier transform yields the location of the small imperfections B,,. In other
terms, once A,(n) is computed from dynamic boundary measurements on I'., we calculate its inverse Fourier
transform. Then the asymptotic formula (2.1) in Theorem 2.1 asserts that this inverse Fourier transform is a
distribution supported at the locations {ZJ}Tzl

Once the locations are known, we may calculate the polarization tensors (M j)?zl by solving an appropriate
linear system arising from (2.1). These polarization tensors give ideas on the orientation and relative size of the
imperfections. From the leading term of A, (n) given by (2.1), we cannot reconstruct more details of the shapes
of the domains B;. Higher order terms in the asymptotic expansion of A,(n), with respect to «, are needed
to reconstruct the domains B; with high resolution. The properties of the polarization tensors are described
in [4,17].

The theoretical number of data (sampling) points needed for an accurate discrete Fourier inversion of A, (n)
follows from Shannon’s sampling theorem. We need (conservatively) order (h/8)> sampled values of Ay(n) to
reconstruct, with resolution d, a collection of imperfections that lie inside a square of side h. Numerical exper-
iments in [5] for the two-dimensional (time-independent) inverse conductivity problem confirm this sampling
and seem to suggest that the method is quite stable with respect to noise in measurements and errors in the
different approximations.

3. THE HUM APPROACH TO EXACT BOUNDARY CONTROLLABILITY

In this section we recall very briefly the numerical method that will be employed in order to solve the exact
controllability problem. Full details of the method may be found in [11,19,24-26].

3.1. Formulation of the problem
We consider the wave equation with control on a part of the boundary,
(0} = A)u=0 in@Q=Qx(0,7),

ul—o = u®, pul—o = u' in €,

[ g on¥X.=T.x(0,T),
“T10 B\, =T\T, x (0,7),

(3.1)

where € is a bounded domain of R?, d = 2, 3, with boundary I, and T, C T is the part of the boundary where
the control is applied.

The problem of the exact boundary controllability is then: “Given T, u°, u!, can we find a control g on X,
such that the solution of (3.1) satisfies

u(z,T) = Ou(x, T) =0 in Q7?7

The answer is positive if one takes T sufficiently large and one controls on a set large enough to encounter
every ray of geometric optics (see [11,15]). A systematic and constructive method for computing such a control,
g, is provided by the Hilbert uniqueness method (HUM) introduced by Lions [30].

3.2. Description of the HUM

We describe briefly the HUM for the control of the wave equation (3.1) from a part of the boundary (see [30]).
Let
E=HNQ) x L*(Q), E' = H Q) x L*(Q)
and define the operator
A E—F
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as follows:

(1) Take e = {€°,e'} € E and solve from t=0tot="T

(0} —A)p=0 in@Q=Qx(0,7T),
(10|t=0 = 607 atgolt:O = el in Q7 (32)
o(x,t) =0 on X =T x(0,7).

(2) Then solve (backwards) from t =T to t =0

(0} —A)yp =0 in@Q=Qx(0,7),
Y(x,T) =0, Op(z,T) =0 in §,

b = %ﬁ on Y. =T.x(0,T),
10 on X\ X, =T\T.x (0,7).

(3) Finally, define the operator T as

Te - {¢t($a 0)7 _w(x7 0)} € El'
We have the original theorem of Lions [30]:

Theorem 3.1 (Lions). Operator Y is linear and continuous from E onto E'; moreover, if T is sufficiently large
(> Tnin = 2 ||z — 20| oo () ) and if T'c is of the type

F(xO):{ZLTEFa (Z’*ﬂ?o)"ﬂ,x >0}

where xo € R? is an arbitrary point and n, is the outward normal to T at x, then Y is an isomorphism from E
onto E'.

3.3. Application of the HUM to the wave equation
We now apply Theorem 3.1 to the control of the wave equation (3.1). Suppose that

u e L?(Q), vl € H1(Q)
are given. Then,
(1) take f = {u',—u’} — i.e. we identify u with v;
(2) solve Te = f to obtain €°, e!, the initial data for the ¢ wave equation (3.1);
(3) solve the ¢ wave equation (3.1) forwards in time using e, e! as initial data;
(4) calculate the normal derivative of the solution ¢ and set g = g—ﬂzo;
(5) solve the ¢ wave equation (3.3) backwards in time using g as the boundary data;
(6)

finally, set u = 1, then since ¥ (z,T) = 0, ¥:(z,T) = 0 was imposed, g (the boundary control) gives the
exact boundary controllability with

u(z,T) = Opu(z,T) =0, Vo € Q.
We remark that the operator Y is symmetric and E-elliptic. These properties imply that, in step (2), Te = f

can be solved by a conjugate gradient algorithm. We will describe the numerical approximation of the control
of system (3.1) in Section 4.3.
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4. NUMERICAL DISCRETIZATION OF DYNAMIC LOCALIZATION

In this section, we present the numerical discretization of our identification problem. First of all, we give
the steps of the reconstruction algorithm. Secondly, we briefly describe the finite element method and the
time-stepping scheme used for solving the different wave equations contained in this detection problem. Then,
we discuss the numerical discretization of the BiGrid HUM method, seen in Section 3. Finally, we present the
implementation of the Fourier inversion method and apply it to some tests on the asymptotic formula (2.1).

4.1. Summary of the identification procedure algorithm
Let us give the steps of the procedure used by our identification algorithm. First, we suppose a finite number
of imperfections, z; + aB; for j =1, ..., m, with conductivities ;. Then, for each n in a discrete set D of values,

(1) Compute the solution u, of the wave equation (2.2) by a finite element method to simulate the boundary

data % on I'c x (0,T) for the inverse problem.
n

0
(2) Compute the quantity a—u on I'c x (0,7") which is explicitly known from (2.5).
n

(3) Calculate the control g, of (2.6) via the BiGrid HUM method.
(4) Form the quantity A, (n) from the left hand side of (2.11) with a suitable quadrature formula.

Finally, apply the inverse Fourier transform to Ay (7) (1 in the Fourier space D) to compute Ay(z) (2 in the
physical space €2). This leads to the solution of the numerical inverse problem, namely the localization of the
centers of the imperfections.

4.2. Time-space discretization for the wave equation

In this subsection, we present the numerical resolution of the wave equation: we combine finite elements for
the space discretization (see [21]) and finite differences for the time discretization. This will then be used for
solving the control problem (2.6) for g, and the inhomogeneous wave equation (2.2) for uq.

We consider the following, general wave equation with a Dirichlet boundary condition, defined on 2 x (0,7):

0%u .

WfV(’qu):f IHQX(O,T),

u=g on 09 x (0,7,

e - (4.1)
t=0 = U m 2,

%h:o = ul in Qa

with f € L2(L2(); (0,T)), g € Hy(99), Q C R?, d = 2, 3. We assume that v € L°(Q), v(z) > 0, Y € Q, and
that u°, u! € H*(Q). Besides, we consider the function g as differentiable in time and satisfying the necessary
compatibility conditions with «° and u!. In practice, in order to work in the homogeneous space H{ (£2), we use
a standard extension technique on the function g (see for instance [31]).

For the finite element mesh, we consider shape-regular meshes, 7},, that partition the domain €2 into a set of
disjoint elements { K}, such that Q = Uger, K. The elements are rectangles (in 2D) or parallelepipeds (in 3D),
aligned with the coordinate axes. The diameter of an element K is denoted by hx and the mesh size h is given
by h = maxgeT, hx. We define the following sub-space of H{(2) on the mesh,

Vi, = {Uh € CO(Q); vy, =0 on IQ and vy |k € Q1, VK € Th},
where Q1 defines the space of polynomials of degree at most one in each of the d variables, thus spanned by

{1, z, y, zy} when d = 2, and by {1, z, y, z, 2y, xz, yz, xyz} when d = 3. We denote by I the set of interior
nodes (the nodes not belonging to I' = 9Q) and by J the set of boundary nodes. Their cardinalities are Ny
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and N respectively. An element v, of V} can be written as

Ny
V€ Qa 'Uh(l') - th(zi)wi(x)a

where w; are the 1 basis functions associated to the interior nodes. Moreover, we have

Ofon(x,1) = 0] (wi(),

i€l

with ’u;' (t) := dvp(w4,t), i € I. We denote by Py, the L2-projection onto Vj,. We obtain the linear, second-order
system of ordinary differential equations for the discretization of (4.1) by the finite element method
MU, (t) + KUu(t) = By, 0<t<T, (4.2)
Up(0) = UY and U, (0) = V;? given, '
where Uy, (t) = (u; (t));er. Un(t) = (un(zi,t));cp, U = Ppu® and V2 = Pyu'. The mass matrix, M, has
coefficients

My = [ wilalosle)de, 1<05< N,
Q
the stiffness matrix, K,

K;; = / v(2)Vw;(x)Vw;(z)dz, 1<1i,j <Ny,
Q
and By, € CM7| the right hand side vector,

B,:/ f(z; t)wl(x)dac—ZK-lg(ac» t)—ZM@(I t)
i o 5 i ij Js il g2 \ it

JjeJ jeJ

To discretize (4.2) in time, we use the fully implicit, unconditionally stable, Newmark time-stepping scheme
(see [31,33]).

4.3. The BiGrid HUM method

This part is devoted to the computation of the boundary control g, of the wave equation in (2.6). This
corresponds to the crucial step (3) of the reconstruction algorithm. It is by now well-known that numerical
algorithms for the boundary control for the wave equation (2.6) may diverge when the mesh-size tends to zero.
These numerical instabilities are due to the high-frequency spurious oscillations. Among the several remedies
proposed in the literature [18,19,28,34,35], we choose to use the preconditioned BiGrid algorithm introduced by
Glowinski in [24]. We have faithfully followed [11,26] in order to formulate our algorithm. The main numerical
novelty here is the generalization of the BiGrid algorithm to the 3D case. Theoretical results on the convergence
of a BiGrid algorithm for the control of the wave equation are very recent. We can cite the article of Ignat
and Zuazua [27] that proves the convergence in the case of a finite-difference space semi-discretizations of the
2D wave equation in the square. The Fourier analysis techniques that they have used can be adapted to any
space dimension and to full approximation schemes (finite differences or structured meshes of finite elements),
and hence to our problem. At the moment, we observe such behaviour numerically. Our BiGrid algorithm is
stable with respect to the mesh-size for regular meshes and smooth data. As an illustration, we report some
convergence errors (discrete norms) in Tables 1 and 2 relative to the control of the wave equation on the unit
cube using as initial data:

e Table 1: u%(z,y, 2) = 10sin(mx) sin(7y) sin(nz), u'(x,y,2) =0,
e Table 2: u%(z,y,2) = e~ 64(2=0.5)*+(y—0.5)*+(:—0.5)] | ul(z,y,2) = 0.
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TABLE 1. Oscillatory data on the unit cube with a partial control.

Mesh size |h=g|h=1|h=5|h=¢g

Iterations 7 7 6 5

Huo_u% ||L2(Q)
||u0HL2(sz)
lun (Tl L2 (o)
Tun O 20

0.02380.0207 | 0.0103 | 0.0051

0.0467|0.0214 | 0.0135 | 0.0087

TABLE 2. Smooth exponential initial data on the unit cube with a partial control.

Mesh size hz%h:%ﬁ h=3i2 hzé
HUO*“%”L%Q)
||u0HL2(sz)
lun (T L2 ()
lun (0)[ 12 0y

1.093 | 0.0632 | 0.0328 | 0.0109

0.8060 | 0.1120 | 0.0645 | 0.0353

A partial controlon I', = {0 <2 <1, y=0,0< 2z2<1}U{x=0,0<y <1 0<z<1}u{z =1,
0 <y<1,0<z<1}is applied. In our calculations, we fix the time step At = h/v/3, T =4 and € = 107°

(see [11] for details on the stopping criterion). We observe a linear in h decay of the L2-error as expected from
our () finite-element approximation.

4.4. Fourier method

The localization of the centers, z;, j = 1,...,m, requires that we numerically compute the inverse Fourier

transform of the boundary integral, A, (n) — see Section 2.2. A theoretical framework for the number of points
needed is provided by Shannon’s Theorem.

Theorem 4.1 (Shannon). If the Fourier transform of a function h(t) is zero for all frequencies greater than
a critical frequency, f. (the Nyquist frequency), then the continuous function h(t) can be uniquely determined
from a knowledge of its sampled values by the formula

sin 27 f.(t — nT)
w(t —nT)

h(t) =T i h(nT)

n=—oo

where T =1/(2f.) and (1/T) is known as the Nyquist sampling rate.

From this theorem we conclude the two following facts:

(1) If the imperfections are known to be contained within a square/cube of side length 20, we must sample
Ao (n) with a step size An = 1/(2M).
(2) If we sample in a domain |9| < max, then the resolution will be at most § = 1/(27max)-
Thus we require N5 = (2M/§)%, d = 2,3, sampled values of A, (1) in order to reconstruct, at a resolution 6, a set
of imperfections contained inside the square/cube of size 2M. This implies that we need (4M nmax)d points.

We now, following the analysis of [32], take a closer look at the quantity A.(n). For clarity, let us assume
that d = 2 and let us examine a simplified form by assuming that our data is of the form

Afy) = =
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for a single imperfection, z = (21, 22). Now we sample 7 in the domain [—9max;, Pmax] X [—Tmax, Mmax], uniformly
with n? points and define the discretization step-size as

27’max
An = )
" n+1

We obtain the discrete approximation,

Ah(n) _ e2i21(777max+(k771)A77)+2i22(7"]max+(l*1)A’n), 1< k’,l <n.

Applying the inverse discrete Fourier transform (IDFT) to this quantity, we obtain

n n
1 Z Z e2izl(_nmax+(k—1)An)+2iz2(_nmax+(z_1)An)ezm(%;“(7-—1))+2wi(ﬁfn(s—1))

n2
k=11=1

for all 1 < r,s < n. Let us look at the first coordinate,

A=

S|

n
Z 02121 (—Mmax+(k—1)An) 2mi( $28 (r—1))
k=1

An elementary calculation yields

Al l sin (29max21)

n .. A —1
sin [w (—MW + 77)}

For n large (n — o0), |A1‘ — 0 unless the quantity in the denominator equals zero. This will occur when
sinkm =0, £k =0, £1,... which means that (% + ’“n;1> must be close to an integer. So, once the sign of z;

is fixed, in order to approach only one integer value (and thus observe a single peak in the Fourier transform),
the following condition must hold:

z1An

1
< Z
s -2
since 0 < % <1.
For large values of mmax, we begin to observe instabilities due to the exponential terms in the asymptotic
formula that become highly oscillatory. In order to control these oscillations, we impose the truncation |n|| <
H (0s,ms)T || in a discrete 2-norm and set the quantity A, (n) = 0 for all other values of n as was done in [12,32].

4.4.1. Test based on the asymptotic formula (2.1)
We recall the asymptotic formula (2.1), neglecting the higher order term,

m
7 in-z;
Aa(n) =a® )" (70 — 1) 2z [Mj(n) = |B;l|, d=2,3. (4.3)
j= J

Let us illustrate through a 3-D case the inherent precision and robustness of this formula. We denote by N,
the number of Fourier points for each component. We report in Figure 2 the successful localization of three
imperfections via the Shannon sampling approach without truncation by taking N, = 128, nmax = 64. Extensive
tests of the formula with different sampling strategies can be found in [22].
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FIGURE 2. Shannon sampling approach without truncation, using the asymptotic formula,
z1 = (0.51,0.64,0.32), zo = (0.66,0.32,0.47) and 23 = (0.39,0.49,0.61).

TABLE 3. Discretization parameters for all numerical simulations.

| Parameter [ 2D | 3D |
N 16, 32 14
R /N /N
At h/V2 | h/V3
T 3>2V214>2V3
€ 1076 1076

5. NUMERICAL SIMULATIONS

We present here some numerical results of our identification algorithm. In all examples, we take the domain €2
to be the unit square [0, 1] or the unit cube [0, 1]3. We use @ finite elements for the space discretization and
an implicit, unconditionally stable Newmark scheme for the time discretization (see Sect. 4.2). We also suppose
that when the control is active on the entire boundary we take a final time, T, according to Table 3. The spatial
discretization, h, and the corresponding time step At are also given in Table 3, as well as the stopping criterion
of the BiGrid HUM method, e. The cutoff function, /3, is equal to 1 on a subdomain ' = (0.2,0.8)%, d = 2, 3.
The conductivity g of the background medium is equal to 1. The Fourier parameters depend on the geometry
considered (number of imperfections and location of each imperfection) and the resolution required. In all the
figures, we plot contours of the inverse Fourier transform, /UXQ(:E)

5.1. Numerical localization of imperfections in 2D
We now present results of the numerical localization procedure, following the steps laid out in Section 4.1.

5.1.1. The Shannon sampling approach with truncation

In Figure 3 we show results for localization using the Shannon approach with truncation of the n-values. In
both cases, we fix o = 0.04, N. = 128 and nmax = 33. The truncation is quite severe, n. = 11, but we obtain
satisfactory results. We have also applied various windowing methods for the computation of the inverse Fourier
transform. These simulations can be found in the thesis [22].

5.1.2. Limited-view data

Since the HUM method permits us to control on a part of the boundary, we can simulate cases where
numerical data are available only on a subset of 0f). In this case, the causality of the wave equation will imply
the need of a longer control time 7" and the eventuality of an increase in the number of iterations required
for the HUM algorithm to converge. A detailed presentation can be found in [11]. In Figure 4 we report
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(a) 21 = (0.33,0.52), z2 = (0.61,0.29), z3 = (0.69,0.72) (b) z1 = (0.45,0.58), z2 = (0.38,0.29), z3 = (0.70, 0.39)

FIGURE 3. Localization in 2D of three imperfections, with thresholding at ||n|| < ||(11,11)]];2.
The true centers are marked by the small squares.

FIGURE 4. Localization in 2D with limited-view data.

the result of a computation with three imperfections, z; = (0.43,0.39), zo = (0.32,0.67), z5 = (0.73,0.58). The
control boundary is {z = 1,0 <y < 1} U{0 <z <1, y =0}, the control time T" = 3, the conductivity is
v; =10, =1,2,3 and h = 1/16. The parameters of the Fourier discretization are: N, = 128, nmax = 128 and
Ne = 12.

This result is very important, since it illustrates the potential of our algorithm for treating more realistic
cases, where full measurements are rarely available.
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FIGURE 5. Localization in 3D of a single imperfection at z = (0.25,0.25,0.25): asymptotic
formula (left), asymptotic formula with truncation (center), numerical localization (right) —
views of x-y plane at z = 0.25.
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FIGURE 6. Localization of three imperfections, centered at z; = (0.39,0.63,0.32), z5
(0.71,0.27,0.43), z3 = (0.51,0.47,0.66) . Views from the -, y- and z-directions.

5.2. Numerical localization of imperfections in 3D

We now turn to the three-dimensional case. We consider the Shannon sampling approach and assume that
we have either full or partial numerical boundary data.

5.2.1. The Shannon sampling approach with truncation

In the first example, we have taken one imperfection with equal abscissa and ordinates. The imperfection
is situated at (0.25,0.25,0.25) with a radius @ = 0.05. The conductivity of the medium is equal to 1 and
that of the imperfection is equal to 10. The number of data (sampling) points for the calculation of A, is
N x Ne x N, =16 x 16 x 16 and the space step h = 1/12. The Fourier inversion is performed with ny.x = 19
and a truncation at n, = 9. In Figure 5 we compare the numerical result with that obtained from the asymptotic
formula, with and without truncation.

The second test case has three imperfections, centered at z; = (0.39,0.63,0.32), zo = (0.71,0.27,0.43),
z3 = (0.51,0.47,0.66). The number of data (sampling) points for the calculation of A, is N. x N. x N, =
64 x 64 x 64, with 7Jmax = 40 and a truncation at 7, = 9. The spatial discretization step is h = 1/14, the radius
of the imperfections o = 0.02 and the conductivity ; = 10. In Figure 6 we observe that all three imperfections
are well located. A 3D view of the localized imperfections is shown in Figure 7.

Finally, we confirm the robustness of our method by a test with four imperfections centered at z; =
(0.66,0.32,0.47), zo = (0.55,0.71,0.39), z3 = (0.39,0.63,0.31), z4 = (0.71,0.42,0.74). We fix the parame-
ters Ne = 64, Nmax = 40 and 7, = 9. The radius of the imperfections is now « = 0.01 and the conductivity
v; = 10. In Figures 8 and 9, we can observe that all four imperfections are well located.
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FIGURE 7. Localization of three imperfections centered at z; = (0.39,0.63,0.32), zo =
(0.71,0.27,0.43), z3 = (0.51,0.47,0.66) . 3D view.
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FIGURE 8. Localization in 3D of four imperfections, centered at z; = (0.66,0.32,0.47), zo =
(0.55,0.71,0.39), 23 = (0.39,0.63,0.31), z4 = (0.71,0.42,0.74). Views from the z-, y- and

z-directions.

5.2.2. Limited-view data

We consider again the second test of the previous section, using now partial measurements on I'. = {0 <
<1, y=0,0<z<1}U{r=0,0<y<1,0<2<1}U{z=10<y<1, 0<z<1}. Inother
words, measurements are assumed to be available on only three adjacent faces of the cube. In Figure 10 we
notice that the imperfections are still well located. Relative errors for the localization of the centers are given in
Table 4. These results illustrate both the accuracy and the robustness of the method. Note that the theoretical
resolution is 0 = 1/2nmax = 0.0125.

5.3. Some remarks on convergence

To end this section, we discuss various aspects related to the convergence of our numerical identification
algorithm. To fix ideas, we took a single imperfection, centered at z = [0.5, 0.5], in the domain [0, 1] x [0, 1]. We
considered two meshes, 20 x 20 with A = 0.05 and 40 x 40 with A = 0.025. For each mesh we ran the detection
algorithm for imperfections of radius o = 0.1, 0.05, 0.025, 0.0125. We define the error as e = ||z — z|| / ||z]| ,
where z. is the computed center.
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FIGURE 9. Localization of four imperfections centered at z; = (0.66,0.32,0.47), zo =
(0.55,0.71,0.39), z3 = (0.39,0.63,0.31), z4 = (0.71,0.42,0.74) . 3D view.
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Ficure 10. Localization in 3D with limited-view data of three imperfections, centered at
z1 = (0.39,0.63,0.32), zo = (0.71,0.27,0.43), z3 = (0.51,0.47,0.66) . Views from the z-, y- and
z-directions.

TABLE 4. Localization of the centers of three imperfections. Relative localization errors (total
control versus partial control).

Theoretical centers Total control | Partial control
z1 = (0.39,0.63,0.32) 0.072 0.072
zo = (0.71,0.27,0.43) 0.007 0.007
z3 = (0.51,0.47,0.66) 0.033 0.052

We first consider the convergence behaviour of the localization error as a function of the size of the imper-
fections — see Table 5 (left). Our computations reveal that as long as the mesh size is sufficiently small, we can
accurately detect imperfections of any size. We start to lose precision as soon as the imperfection radius is of
the order of the mesh size. However, the imperfection center is still accurately recovered. This can be explained
by the robustness of the Fourier approach where we can increase the number of points in the Fourier domain
and thus reduce the step-size while still maintaining a large enough bandwidth in order to avoid truncation
effects. The computations show that the only critical parameters are 7max, Ne and 7.. In other words, by
adjusting these three Fourier parameters, we can obtain an equally good precision, e, for the two meshes and
for all imperfection radii — see Table 5 (right) and Table 6.



1032 M. ASCH ET AL.

TABLE 5. Convergence of the Fourier detection algorithm as a function of the imperfection size
(on left) and of Nmax (on right) for the 20 x 20 mesh with h = 0.05.

| o | Ne | Tlmax | T | € | | « | Ne | Tlmax | T | € |
0.1 | 128 | 80 6 | 0.0149 0.1] 64 | 40 6 | 0.0526
0.05 | 128 | &80 6 | 0.0149 0.1 | 64 50 6 | 0.0301
0.025 | 128 | 80 6 | 0.0149 0.1]64 | 60 6 | 0.0150

TABLE 6. Convergence of the Fourier detection algorithm as a function of the imperfection size
for the 40 x 40 mesh with h = 0.025.

| o | N, | Tlmax | T | & |
0.1 128 | 80 6 | 0.0149
0.05 128 80 6 | 0.0149
0.025 | 128 | 80 6 | 0.0149
0.0125 | 128 80 6 | 0.0149

The convergence of our implementation of the HUM algorithm has already been discussed in Section 4.3.

Concerning the convergence of the complete identification algorithm with respect to the (space-time) mesh
size, we observe that this is related to a complex interplay between the HUM algorithm, the FFT and the
numerical integration used to evaluate the boundary measurements. In particular, we note that numerical FFT
precision is highly dependent on the effects of aliasing, truncation and correct sampling in general (see Sect. 4.4
and [16]). Thus we conclude that if the FFT and the numerical integration are supposed accurate enough, the
overall convergence will be that of the HUM algorithm ¢.e. first order in space and time.

Remark 5.1. In order to reduce the CPU time needed by our identification algorithm, we have used Message
Passing Interface (MPI) commands for a parallel implementation in Fortran 90. Two levels of parallelism are
possible:

e coarse grain, where we exploit the MPI commands for looping on chunks of different values of n;

e and fine grain, where the linear solvers are parallelized using the PETSc package [14].

In the first case, the speed-up should be linear in the number of processors. In the second case, we expect the
speed-up to be superlinear. We present in Figure 11 a graph of CPU time wversus the number of processors.
For a sequence of 2D computations, we have taken h = 1/32 and N, = 16, thus yielding 1024 sample points in
x-y space, 135 time steps and 256 sample points in Fourier space.

We remark that we obtain a perfectly linear speed-up in the number of processors.

6. CONCLUSION AND PERSPECTIVES

This numerical study has proven the feasibility and the robustness of the dynamic localization procedure
proposed by Ammari in [2] that is based on the wave equation. The two central parts of this procedure are
the computation of a control function, via a geometric control method, and a Fourier inversion of a boundary
integral. We have carefully implemented these two parts. The first using an algorithm based on the HUM
(Hilbert Uniqueness Method) with a BiGrid, finite-element spatial approximation and a Newmark scheme in
time, and the second using Shannon’s theorem and windowing functions. Our implementation of the HUM also
permits the study of limited-view data where the observations are available on only a part of the frontier of the
object/domain that we are imaging.

The results obtained, in 2D and in 3D, are remarkably accurate. We can localize an arbitrary number of
randomly placed imperfections with good precision. Particularly encouraging are the good results obtained
in the limited-view cases that show that if we can construct the control function accurately enough, we can
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FIGURE 11. Performance curve for the localization of one imperfection with parallelization.

obtain the same localization precision with limited-view data as that which can be obtained from full boundary
data.

The perspectives are numerous. First of all, we intend to extend the treatment to general geometries.
However, here we need to ensure the applicability of the BiGrid method which has been based here on a
structured mesh. In order to overcome this, we could resort to uniformly controllable approaches as in [13],
or spectral approaches [29], that can both be used with unstructured meshes. A second perspective is to
treat coupled photoacoustic [9] and magnetoacoustic [8] approaches in the dynamic regime. There is also the
possibility of extending the complete localization procedure to Maxwell’s equations, for which the theory exists
(see [3]) but the numerical implementation of the geometric control still remains to be done.

Acknowledgements. The authors would like to thank the referees whose highly relevant remarks greatly improved the
final form of this paper.
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