Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 1-27.

A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253-279] is recovered. In this case, the convergence of the discrete time approximations is improved.

DOI : 10.1051/cocv/2009037
Classification : 49K10, 49Q20
Mots clés : variational models, energy minimization, free discontinuity problems, crack propagation, Young measures, quasistatic evolution, rate-independent processes
@article{COCV_2011__17_1_1_0,
     author = {Cagnetti, Filippo and Toader, Rodica},
     title = {Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a {Young} measures approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--27},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     doi = {10.1051/cocv/2009037},
     mrnumber = {2775184},
     zbl = {1210.49046},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2009037/}
}
TY  - JOUR
AU  - Cagnetti, Filippo
AU  - Toader, Rodica
TI  - Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 1
EP  - 27
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2009037/
DO  - 10.1051/cocv/2009037
LA  - en
ID  - COCV_2011__17_1_1_0
ER  - 
%0 Journal Article
%A Cagnetti, Filippo
%A Toader, Rodica
%T Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 1-27
%V 17
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2009037/
%R 10.1051/cocv/2009037
%G en
%F COCV_2011__17_1_1_0
Cagnetti, Filippo; Toader, Rodica. Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 1-27. doi : 10.1051/cocv/2009037. http://www.numdam.org/articles/10.1051/cocv/2009037/

[1] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7 (1962) 55-129. | MR

[2] F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Methods Appl. Sci. 18 (2008) 1027-1071. | MR | Zbl

[3] D.L. Cohn, Measure theory. Reprint of the 1980 original, Birkhäuser, Boston, USA (1993). | MR | Zbl

[4] G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101-135. | MR | Zbl

[5] G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253-279. | MR | Zbl

[6] G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225. | MR | Zbl

[7] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319-1342. | MR | Zbl

[8] A. Mielke, Evolution of rate-independent systems, in Handbook of differential equations, evolutionary equations 2, C.M. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam, The Netherlands (2005) 461-559. | MR | Zbl

[9] J. Neveu, Discrete-Parameter Martingales. American Elsevier, Amsterdam, The Netherlands (1975). | MR | Zbl

[10] M. Valadier, Young measures, in Methods of nonconvex analysis (Varenna, 1989) 1446, Lect. Notes Math., Springer, Berlin, Germany (1990) 152-188. | MR | Zbl

Cité par Sources :